scholarly journals Enzymatic hydrolysis of grass carp myofibrillar protein and antioxidant properties of hydrolysates

2010 ◽  
Vol 28 (No. 6) ◽  
pp. 475-484 ◽  
Author(s):  
J. Ren ◽  
H. Wang ◽  
M. Zhao ◽  
Ch. Cui ◽  
X. Hu

Myofibrillar protein was extracted from grass carp, a freshwater fish, and hydrolysed using five commercial proteases (papain, pancreatin 6.0, bromelain, Neutrase 1.5MG, and Alcalase 2.4 L). The antioxidant activities of the hydrolysates were determined. Pancreatin 6.0 proved to be the most efficient protease for hydrolysing myofibrillar protein with a very high protein recovery (90.20%), its hydrolysates exhibiting the highest hydroxyl radical (&bull;OH) scavenging activity (IC<sub>50</sub> = 349.89 &plusmn; 11.50 &mu;g/ml) out of all five hydrolysates. Molecular weight distribution analysis revealed that pancreatin 6.0 hydrolysate rendered a higher proportion of the 6&minus;10 kDa fraction and a lower proportion of the 3&minus;6 kDa fraction as compared with other hydrolysates. The maximum &bull;OH scavenging activity for pancreatin 6.0 hydrolysate (IC<sub>50</sub> = 229.90 &micro;g/ml) was obtained at the enzyme to substrate ratio of 0.52%, the incubation time of 7.03 h, and the incubation temperature of 50.56&deg;C, as optimised by response surface methodology. In vitro antioxidant experiments proved that pancreatin 6.0 hydrolysates had obvious inhibitory effects on lipid peroxidation and low-density lipoproteins oxidation under optimised conditions.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xin Yang ◽  
Di Zhang ◽  
Li-min Song ◽  
Qian Xu ◽  
Hong Li ◽  
...  

Peony seed oil (PSO) is a novel vegetable oil developed from the seeds of Paeonia suffruticosa Andr. The present study aimed to make an overall investigation on the chemical profile and antioxidant activities of PSO for reasonable development and utilization of this new resource food. Chemical analysis revealed that PSO was characterized by an uncommon high portion of α-linolenic acid (>38%), fairly low ratio of n-6 to n-3 polyunsaturated fatty acids (0.69), and much higher content of γ-tocopherol than various conventional seed oils. In vitro assay indicated that PSO is a more potent scavenger of free radicals than extra virgin olive oil. Moderate intake of PSO exhibited obvious protection against various oxidative damages such as tetrachloromethane-induced acute liver injury in mice and diet-induced hyperlipidemia in rats. The changes in the key indicators of oxidative injury and fatty acid composition in the liver caused by PSO administration were measured, and the results demonstrated that antioxidant properties of PSO are closely related to their characteristic chemical composition. Consequently, the present study provided new evidence for the health implications of PSO, which deserves further development for medical and nutritional use against oxidative damages that are associated with various diseases.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1127 ◽  
Author(s):  
Beatriz Chamorro ◽  
David García-Vieira ◽  
Daniel Diez-Iriepa ◽  
Estíbaliz Garagarza ◽  
Mourad Chioua ◽  
...  

Herein, we report the neuroprotective and antioxidant activity of 1,1′-biphenyl nitrones (BPNs) 1–5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1′-biphenyl]-4-carbaldehyde and [1,1′-biphenyl]-4,4′-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen–glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1–5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen–glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.


2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


Author(s):  
Vitor Geniselli da Silva ◽  
Ruann Janser Soares de Castro

Aiming to explore the use of ionic liquids (ILs) not yet described in the literature, this work evaluated the hydrolysis of proteins from chicken viscera using the protease Alcalase modified and unmodified by the IL tetramethylammonium bromide. The protein hydrolysates produced in the presence of the IL presented values of antioxidant activities 40% higher than the hydrolysates obtained without IL. In addition, with the presence of the IL, it was possible to obtain protein hydrolysates from chicken viscera with similar antioxidant activities, compared to the protein hydrolysates produced without IL, using 1/3 of the amount of enzyme.


2020 ◽  
Vol 11 (4) ◽  
pp. 6262-6267
Author(s):  
Krishnamoorthy Meenakumari ◽  
Giridharan Bupesh ◽  
Mayur Mausoom Phukan

The foods from plants were known to ensure against degenerative diseases and maturing because of their antioxidant activitycredited to their high content. Information on antioxidant activity of Indian medicinal plant is abundant. To the best of our knowledge, biological properties have not been accounted in the literature for this species of . As a point, this is the first results to assess the anti-oxidant activity of the plant which belongs to the family . The antioxidant activity of Methanol, , Ethyl acetate and Aqueous extracts of E. was determined using the DPPH free radical scavenging activity, ABTS radical scavenging activity and reducing power assay. The DPPH scavenging activity showed higher activity observed in extract (63%) of E. than (54%), (44%) and aqueous (30%). the ABTS assay inhibition in extract (58%) than (43%), (38%) and aqueous (32%) extracts. The reducing power assay of different extracts was increased in extract (54%) than (40%), (34%) and aqueous (28%) extracts. Overall, the and ethyl acetate extract had higher antioxidant properties than other extract. However, in this study, extracts exhibit great potential for antioxidant activity and may be useful for their nutritional and medicinal functions.


2013 ◽  
Vol 834-836 ◽  
pp. 577-581
Author(s):  
Jian Chao Deng ◽  
Gai Gai Niu ◽  
Lai Hao Li ◽  
Xian Qing Yang ◽  
Yong Chuan Deng ◽  
...  

Flavonoids was isolated from canavalia maritime by accelerated solvent extraction (ASE) coupled with high-speed counter-current chromatography (HSCCC). The antioxidant activities of flavonoids were investigated in vitro and evaluated by IC50. The results indicated that flavonoids possessed obvious reducing power and significant inhibitory effects on 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical and superoxide radical. These results suggest that canavalia maritime flavonoids could be a suitable natural antioxidant for humans.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Hamdy Abdelkader ◽  
Michael Longman ◽  
Raid G. Alany ◽  
Barbara Pierscionek

Purpose.L-Carnosine is a naturally occurring dipeptide which recently gained popularity as an anticataractogenic agent due to its purported antioxidant activities. There is a paucity of research and conclusive evidence to support such claims. This work offers compelling data that help clarify the mechanism(s) behind the anticataract properties of L-carnosine.Methods.Direct in vitro antioxidant free radical scavenging properties were assayed using three different antioxidant (TEAC, CUPRAC, and DPPH) assays. Indirect in vitro and ex vivo antioxidant assays were studied by measuring glutathione bleaching capacity and total sulfhydryl (SH) capacity of bovine lens homogenates as well as hydrogen-peroxide-stress assay using human lens epithelial cells. Whole porcine lenses were incubated in high galactose media to study the anticataract effects of L-carnosine. MTT cytotoxicity assays were conducted on human lens epithelial cells.Results.The results showed that L-carnosine is a highly potent antiglycating agent but with weak metal chelating and antioxidant properties. There were no significant decreases in lens epithelial cell viability compared to negative controls. Whole porcine lenses incubated in high galactose media and treated with 20 mM L-carnosine showed a dramatic inhibition of advanced glycation end product formation as evidenced by NBT and boronate affinity chromatography assays.Conclusion.L-Carnosine offers prospects for investigating new methods of treatment for diabetic cataract and any diseases that are caused by glycation.


2019 ◽  
Vol 44 (3) ◽  
pp. 239-247
Author(s):  
Mbarka Hfaiedh ◽  
Dalel Brahmi ◽  
Mohamed Nizar Zourgui ◽  
Lazhar Zourgui

Environmental and occupational exposure to chromium compounds, especially hexavalent chromium, is widely recognized as potentially nephrotoxic in humans and animals. The present study aimed to assess the efficacy of cactus (Opuntia ficus-indica) against sodium dichromate-induced nephrotoxicity, oxidative stress, and genotoxicity. Cactus cladodes extract (CCE) was phytochemically studied and tested in vitro for its potential antioxidant activities. Additionally, the preventive effect of CCE against sodium dichromate-induced renal dysfunction in a Wistar rat model (24 rats) was evaluated. For this purpose, CCE at a dose of 100 mg/kg was orally administered, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the kidneys were excised for histological, lipid peroxidation, and antioxidant enzyme analyses. The phenol, flavonoid, tannin, ascorbic acid, and carotenoid contents of CCE were considered to be important. Our analyses showed that 1 mL of CCE was equivalent to 982.5 ± 1.79 μg of gallic acid, 294.37 ± 0.84 μg of rutin, 234.78 ± 0.24 μg of catechin, 204.34 ± 1.53 μg of ascorbic acid, and 3.14 ± 0.51 μg of β-carotene. In vivo, pretreatment with CCE was found to provide significant protection against sodium dichromate-induced nephrotoxicity by inhibiting lipid peroxidation, preserving normal antioxidant activities, and protecting renal tissues from lesions and DNA damage. The nephroprotective potential of CCE against sodium dichromate toxicity might be due to its antioxidant properties.


2021 ◽  
Vol 25 (1) ◽  
pp. 75-79
Author(s):  
S.O. Olubodun ◽  
G.E. Eriyamremu ◽  
M.E. Ayevbuomwan ◽  
C.I. Nzoputa

The presence of various bioactive components makes it necessary to analyse plants for their potential to act as a source of useful treatments and cures for many inflammatory, infectious and pathogenic diseases. This study was carried out to determine phytochemicals and in-vitro antioxidant activities of the leaf extracts of Acalypha godseffiana. The leaves of A. godseffiana were collected, dried, pulverized and extracted separately with methanol and water using maceration method. The extract was concentrated in vacuo with rotary evaporator at 40oC. The extracts were subjected to quantitative phytochemical analysis and different anti-oxidant analytical procedures like FRAP, DPPH etc to determine the radical scavenging capabilities. The results of phytochemical analysis estimated the quantities and revealed the presence of alkaloids, flavonoids, tannins, saponins and terpenoids which varied in both extracts. The methanol and aqueous extracts exhibited antioxidant activities with relatively high IC50 (IC50 = 3.67 ìg/ml and 4.42ìg/ml respectively) which accounted for a low free radical-scavenging activity when compared with the reference antioxidant, vitamin C (IC50 = 1.51ìg/ml). The results of the study indicates that A. godseffiana leaf extracts contain secondary metabolites and possesses antioxidant properties.


2021 ◽  
pp. 28-38
Author(s):  
Henry Bulama ◽  
Daniel Dahiru ◽  
Joshua Madu

Background: Cataract is a major cause of visual impairment and blindness around the world. This study evaluated the in vitro antioxidant and anti-cataract activities of Cnidoscolus aconitifolius leaves extract and fractions. Antioxidant activities were evaluated by 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azinobis (3-ethylbenzothiozoline-6-sulfonic acid) (ABTS), total reducing power, and hydrogen peroxide scavenging assays. Anti-cataract potential was evaluated in vitro using goat lenses divided into eight groups of different treatments and incubated in artificial aqueous humor at 37 °C for 72 hours. Glucose-induced opacity in the lenses was observed and biochemical indices quantified (catalase, Malondialdehyde (MDA) and total protein in the lens homogenate). Results: The crude extract and its fractions possess substantial antioxidant activities. The aqueous fraction exhibited the best DPPH radical scavenging activity (IC50 value 78.599 µg/ml); while the dichloromethane fraction exhibited the highest ABTS radical scavenging activity with IC50 66.68 µg/ml. The anti-cataract evaluation of crude and fractions at 250 μg/ml showed a significant increase (p<0.05) in the total protein and catalase activity compared to the cataract control group. The malonaldehyde level decreased significantly (p<0.05) in all the treated groups.


Sign in / Sign up

Export Citation Format

Share Document