scholarly journals Economic analysis of integrated weed management in field bean (Phaseolus vulgaris L.)

2011 ◽  
Vol 49 (No. 4) ◽  
pp. 183-189 ◽  
Author(s):  
E. Štefanić ◽  
ŠtefanićI ◽  
A.J. Murdoch

Field experiments were conducted in field bean in the north-eastern part of theRepublicofCroatiato compare weed control and crop response under different management practices within the critical period of field bean production. The practices consisted in broadcast application of labelled rate of preemergence herbicide (pre) and postemergence herbicide application: (post) broadcast, band application over the rows, and band application combined with mechanical cultivation using of different herbicide doses recommended by the manufacturer (2×, 1×, 1/2×, 1/4×, 1/8×). In 1999, weed control with pre application of pendimethalin was superior to post bentazone application due to late emergence of weeds and lack of residual herbicide control. In 2000 bentazone combined with cycloxydim controlled weeds in field bean better than pre herbicide application. Based on the results of this research, single pre or post application of herbicide did not control a broad spectrum of weeds and did not provide the commercially acceptable full season control. Reduced rates of herbicide are not advisable under high weed pressure.

2006 ◽  
Vol 46 (9) ◽  
pp. 1177 ◽  
Author(s):  
J. A. Werth ◽  
C. Preston ◽  
G. N. Roberts ◽  
I. N. Taylor

Forty growers in 4 major cotton-growing regions in Australia were surveyed in 2003 to investigate how the adoption of glyphosate-tolerant cotton (Roundup Ready) had influenced herbicide use, weed management techniques, and whether changes to the weed spectrum could be identified. The 10 most common weeds reported on cotton fields were the same in glyphosate-tolerant and conventional fields in this survey. Herbicide use patterns were altered by the adoption of glyphosate-tolerant cotton with up to 6 times more glyphosate usage, but 21% fewer growers applying pre-emergence herbicides in glyphosate-tolerant fields. Other weed control practices such as the use of post-emergence herbicides, inter-row cultivation and hand hoeing were only reduced marginally. However, growers indicated that management practices are likely to change over time, especially with the introduction of enhanced glyphosate tolerance technology (Roundup Ready Flex), and anticipate a 32% decrease in the number of growers using alternative weed management practices. To date, management practices other than glyphosate use have not changed markedly in glyphosate-tolerant cotton indicating a conservative approach by growers adopting this technology and reflecting the narrow window of herbicide application. The range of weed control options still being employed in glyphosate-tolerant cotton would not increase the risk of glyphosate resistance development.


2004 ◽  
Vol 18 (4) ◽  
pp. 1006-1012 ◽  
Author(s):  
K. Neil Harker ◽  
George W. Clayton ◽  
John T. O'Donovan ◽  
Robert E. Blackshaw ◽  
F. Craig Stevenson

Herbicide-resistant canola dominates the canola market in Canada. A multiyear field experiment was conducted at three locations to investigate the effect of time of weed removal (two-, four-, or six-leaf canola) and herbicide rate (50 or 100% recommended) in three herbicide-resistant canola systems. Weeds were controlled in glufosinate-resistant canola (GLU) with glufosinate, in glyphosate-resistant canola (GLY) with glyphosate, and in imidazolinone-resistant canola (IMI) with a 50:50 mixture of imazamox and imazethapyr. Canola yields were similar among the three canola cultivar–herbicide systems. Yields were not influenced by 50 vs. 100% herbicide rates. Timing of weed removal had the greatest effect on canola yield, with weed removal at the four-leaf stage giving the highest yields in most cases. Percent dockage was often greater for GLU and IMI than for GLY. In comparison with the other treatments, dockage levels doubled for GLU after application at 50% herbicide rates. The consistency of monocot weed control was usually greater for GLY than for GLU or IMI systems. However, weed biomass data revealed no differences in dicot weed control consistency between IMI and GLY systems. Greater dockage and weed biomass variability after weed removal at the six-leaf stage or after low herbicide rates suggests higher weed seed production, which could constrain the adoption of integrated weed management practices in subsequent years.


Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 138 ◽  
Author(s):  
Hilary Sandler

Integrated weed management (IWM) has been part of cranberry cultivation since its inception in the early 19th century. Proper site and cultivar selection, good drainage, rapid vine establishment, and hand weeding are as important now for successful weed management as when the industry first started. In 1940, Extension publications listed eight herbicides (e.g., petroleum-based products, inorganic salts and sulfates) for weed control. Currently, 18 herbicides representing 11 different modes of action are registered for use on cranberries. Nonchemical methods, such as hand weeding, sanding, flooding, and proper fertilization, remain integral for managing weed populations; new tactics such as flame cultivation have been added to the toolbox. Priority ratings have been developed to aid in weed management planning. Despite many efforts, biological control of weeds remains elusive on the commercial scale. Evaluation of new herbicides, unmanned aerial systems (UAS), image analysis, and precision agriculture technology; investigation of other management practices for weeds and their natural enemies; utilization of computational decision making and Big Data; and determination of the impact of climate change are research areas whose results will translate into new use recommendations for the weed control of cranberry.


2019 ◽  
Vol 33 (03) ◽  
pp. 448-458 ◽  
Author(s):  
Brendan A. Metzger ◽  
Nader Soltani ◽  
Alan J. Raeder ◽  
David C. Hooker ◽  
Darren E. Robinson ◽  
...  

AbstractEffective POST herbicides and herbicide mixtures are key components of integrated weed management in corn; however, herbicides vary in their efficacy based on application timing. Six field experiments were conducted over 2 yr (2017–2018) in southwestern Ontario, Canada, to determine the effects of herbicide application timing and rate on the efficacy of tolpyralate, a new 4-hydroxyphenyl pyruvate dioxygenase inhibitor. Tolpyralate at 15, 30, or 40 g ai ha−1 in combination with atrazine at 500 or 1,000 g ai ha−1 was applied PRE, early POST, mid-POST, or late POST. Tolpyralate + atrazine at rates ≥30 + 1,000 g ha−1 provided equivalent control of common lambsquarters and Powell amaranth applied PRE or POST, whereas no rate applied PRE controlled common ragweed, velvetleaf, barnyardgrass, or green foxtail. Common ragweed, common lambsquarters, velvetleaf, and Powell amaranth were controlled equally regardless of POST timing. In contrast, control of barnyardgrass and green foxtail declined when herbicide application was delayed to the late-POST timing, irrespective of herbicide rate. Similarly, corn grain yield declined within each tolpyralate + atrazine rate when herbicide applications were delayed to late-POST timing. Overall, the results of this study indicate that several monocot and dicot weed species can be controlled with tolpyralate + atrazine with an early to mid-POST herbicide application timing, before weeds reach 30 cm in height, and Powell amaranth and common lambsquarters can also be controlled PRE. Additionally, this study provides further evidence highlighting the importance of effective, early-season weed control in corn.


2004 ◽  
Vol 44 (10) ◽  
pp. 993 ◽  
Author(s):  
R. S. Llewellyn ◽  
R. K. Lindner ◽  
D. J. Pannell ◽  
S. B. Powles

Greater adoption of integrated weed management, to reduce herbicide reliance, is an objective of many research and extension programmes. In Australian grain-growing regions, integrated weed management is particularly important for the management of herbicide resistance in weeds. In this study, survey data from personal interviews with 132 Western Australian grain growers are used to characterise the use and perceptions of integrated weed management practices. The main objective was to identify opportunities for improved weed management decision making, through targeted research and extension. The extent to which integrated weed management practices are used on individual farms was measured. Perceptions of the efficacy and reliability of various weed management practices were elicited for control of annual ryegrass (Lolium rigidum Gaud.), along with perceptions of the economic value of integrated weed management practices relative to selective herbicides. All growers were shown to be using several integrated weed management practices, although the use of some practices was strongly associated with the presence of a herbicide-resistant weed population. In general, both users and non-users were found to have high levels of awareness of integrated weed management practices and their weed control efficacy. Herbicide-based practices were perceived to be the most cost-effective. Opportunities for greater adoption of integrated weed management practices, to conserve the existing herbicide resource, exist where practices can be shown to offer greater shorter-term economic value, not necessarily just in terms of weed control, but to the broader farming system.


2015 ◽  
Vol 29 (3) ◽  
pp. 544-549 ◽  
Author(s):  
Mohsen Mohseni-Moghadam ◽  
Douglas Doohan

Field experiments were conducted at the North Central Agricultural Research Station in Fremont, OH, in 2006 and 2007, to evaluate tolerance of banana pepper to S-metolachlor and clomazone, and the efficacy of these herbicides on green and giant foxtail, common lambsquarters, and common purslane. The crop was machine-transplanted in late spring of each year. Pretransplant (PRETP) herbicide treatments included two S-metolachlor rates (534 and 1,070 g ai ha−1), two clomazone rates (560 and 1,120 g ai ha−1), and four tank mixes of S-metolachlor plus clomazone (534 + 560 g ha−1, 1,070 + 560 g ha−1, 534 + 1,120 g ha−1, and 1,070 + 1,120 g ha−1). Crop injury and weed control data were collected at 2 and 4 wk after treatment (WAT). The crop was harvested two times from August to September. Minor crop injury was observed at 2 WAT only in 2006 and in plots treated with S-metolachlor, alone or in combination with clomazone. In 2007, slight crop injury at 6 WAT in most herbicide-treated plots was mostly related to weeds that grew regardless of herbicide treatment. In general, S-metolachlor provided less weed control than did clomazone or tank mixes of S-metolachlor plus clomazone. Clomazone did not reduce yield of banana pepper. Registration of clomazone would provide banana pepper growers an opportunity to control weeds caused by late emergence or poor initial control following a burndown herbicide application.


Weed Science ◽  
2014 ◽  
Vol 62 (2) ◽  
pp. 350-359 ◽  
Author(s):  
Gulshan Mahajan ◽  
Vikas Poonia ◽  
Bhagirath S. Chauhan

Field experiments were conducted in Punjab, India, in 2011 and 2012 to study the integrated effect of planting pattern [uniform rows (20-cm spacing) and paired rows (15-, 25-, and 15-cm spacing)], cultivars (PR-115 and IET-21214), and weed control treatments (nontreated control, pendimethalin 750 g ai ha−1, bispyribac-sodium 25 g ai ha−1, and pendimethalin 750 g ha−1 followed by bispyribac-sodium 25 g ha−1) on weed suppression and rice grain yield in dry-seeded rice. In the nontreated control, IET-21214 had higher grain yield than PR-115 in both planting patterns. However, such differences were not observed within the herbicide treatment. IET-21214 in paired rows, even in nontreated control, provided grain yield (4.7 t ha−1) similar to that in uniform rows coupled with the sole application of pendimethalin (4.3 t ha−1) and bispyribac-sodium (5.0 t ha−1). In uniform rows, sequential application of pendimethalin (PRE) and bispyribac-sodium (POST) provided the highest grain yield among all the weed control treatments and this treatment produced grain yield of 5.9 and 6.1 t ha−1 for PR-115 and IET-21214, respectively. Similarly, in paired rows, PR-115 in paired rows treated with sequential application of pendimethalin and bispyribac-sodium had highest grain yield (6.1 t ha−1) among all the weed control treatments. However, IET-21214 with the sole application of bispyribac-sodium produced grain yield similar to the sequential application of pendimethalin and bispyribac-sodium. At 30 days after sowing, PR-115 in paired rows coupled with pendimethalin application accrued weed biomass (10.7 g m−2) similar to the sequential application of pendimethalin and bispyribac-sodium coupled with uniform rows (8.1 g m−2). Similarly, IET-21214 with bispyribac-sodium application provided weed control similar to the sequential application of pendimethalin and bispyribac-sodium. Our study implied that grain yield of some cultivars could be improved by exploring their competitiveness through paired-row planting patterns with less use of herbicides.


Weed Science ◽  
2017 ◽  
Vol 65 (4) ◽  
pp. 525-533 ◽  
Author(s):  
Collen Redlick ◽  
Hema S. N. Duddu ◽  
Lena D. Syrovy ◽  
Christian J. Willenborg ◽  
Eric N. Johnson ◽  
...  

Concern over the development of herbicide-resistant weeds has led to interest in integrated weed management systems that reduce selection pressure by utilizing mechanical and cultural weed control practices in addition to herbicides. Increasing crop seeding rate increases crop competitive ability and thus can enhance herbicide efficacy. However, it is unknown how increasing the seeding rate affects an herbicide’s efficacy. The objective of this study was to examine the interaction between increasing seeding rate and herbicide dose to control weeds. To meet this objective, the herbicide fluthiacet-methyl was applied to field-grown lentil, with Indian mustard, a proxy for wild mustard, used as a model weed. The experiment was a factorial design with four lentil seeding rates and seven herbicide rates. Overall the herbicide dose response was altered by changing lentil seeding rate. Increasing lentil seeding rate decreased the weed biomass production when herbicides were not applied. In two of the four site-years, increasing lentil seeding rate lowered the herbicide ED50, the dose required to result in a 50% reduction in weed biomass. Increasing the crop seeding rate altered the dose response to provide greater weed control at lower herbicide rates compared with normal crop seeding rates. Increased seeding rates also resulted in higher and more stable crop seed yields across a wider range of herbicide dosages. These results suggest that dose–response models can be used to evaluate the efficacy of other weed management practices that can interact with herbicide performance.


Weed Science ◽  
2021 ◽  
Vol 69 (2) ◽  
pp. 147-160
Author(s):  
Ilias Travlos ◽  
Anastasia Tsekoura ◽  
Nikolaos Antonopoulos ◽  
Panagiotis Kanatas ◽  
Ioannis Gazoulis

AbstractOptimum herbicide use is a key factor affecting the success of any integrated weed management strategy. The main objective of the current study was to implement a method based on spectrometer measurements for the in situ evaluation of herbicide efficacy and the detection of potentially herbicide-resistant weeds. Field trials were conducted in Greece between 2018 and 2020 in several durum wheat fields (Triticum durum Desf.). In all trials, the overall effect of herbicide application on the recorded Normalized Difference Vegetation Index (NDVI) values (at 1 and 2 wk after treatment [WAT]) was significant (P ≤ 0.001). For the majority of the surveyed fields, low NDVI values were recorded after 2,4-D application and a mixture of clopyralid + florasulam from 1 WAT, suggesting their increased efficacy. In several cases, the application of pyroxsulam + florasulam resulted in significant NDVI reductions at 2 WAT. As observed at the end of the growing seasons, the herbicides that reduced NDVI resulted in lower weed biomass. Strong correlations were observed between weed aboveground biomass and NDVI (2 WAT). In particular, R2 values were 0.8234 to 0.8649, 0.8453, 0.8595, 0.8149, and 0.8925 for the Aliartos, Thiva, Domokos, Larissa, and Orestiada fields, respectively. The overall effects of herbicide application on wheat grain yield were also significant (P ≤ 0.001). Pot experiments confirmed that the high NDVI values in some cases could be attributed to the presence of herbicide-resistant weeds. For instance, the resistance indices of two accessions of catchweed bedstraw (Galium aparine L.) to mesosulfuron-methyl + iodosulfuron-methyl-sodium ranged between 9.7 and 13.2, whereas one sterile oat [Avena sterilis L. ssp. ludoviciana (Durieu) Gillet & Magne] accession was 8.8 times more resistant to fenoxaprop-p-ethyl than a susceptible one. The present study is targeted at making a significant contribution toward establishing cause–effect relationships and presenting a useful tool for developing more effective weed management practices in more arable crops and under different soil and climatic conditions.


Author(s):  
Nano Alemu Daba ◽  
Janmejai Sharma

The experiment was conducted to assess the integrated effects of pre-emergence herbicides and hand-weeding on weed control, yield components, yield, and their economic feasibility for cost effective weed control in faba bean. The experiment consisted of 12 treatments viz. pre-emergence s-metolachlor (1.0, 1.5 and 2.0 kg ha-1) and pendimethalin (1.0, 1.25 and 1.5 kg ha-1), each at three rates metolachlor, s-metolachlor + one-hand-weeding, pendimethalin + one-hand-weeding, two-hand-weeding, complete weed free and weedy checks arranged. The weed flora consisted of broadleaved and sedge with the relative densities of 81.02 and 18.98 % at Haramaya district, and 80.83% and 19.17%, at Gurawa district, respectively. Application of s-metolachlor and pendimethalin 1.0 kg ha-1 each supplemented with hand weeding 5 WAE significantly (p ≤0.01) affected the broadleaved weeds, sedges and weed dry weight at both sites. S-metolachlor 1.0 kg ha-1 supplemented with hand weeding 5 WAE gave the lowest total number of weeds (8.29 m-2) following the weed free check. Higher grain yield (3555.8 kg ha-1) was produced with s-metolachlor 1.0 kg ha-1 supplemented with one-hand-weeding 5 WAE following complete weed-free at Gurawa. The benefit gained from s-metolachlor and pendimethalin at 1.0 kg ha-1 each supplemented with one hand weeding 5 WAE were greater than the value recorded from the weedy check by 216% and 198 %, respectively. S-metolachlor 1.0 kg ha-1 supplemented with hand weeding 5 WAE treatment resulted in the highest grain yield and economic benefit. However, in case labour is constraint and s-metolachlor herbicide is timely available, pre emergence application of s-metolachlor at 2.0 kg ha-1 should be the alternative to preclude the yield loss and to ensure maximum benefit.


Sign in / Sign up

Export Citation Format

Share Document