scholarly journals Sugar beet response to different K, Na and Mg ratios in applied fertilizers

2018 ◽  
Vol 64 (No. 4) ◽  
pp. 173-179
Author(s):  
Barłóg Przemysław ◽  
Szczepaniak Witold ◽  
Grzebisz Witold ◽  
Pogłodziński Radosław

Potassium (K) in sugar beet can be partly replaced by magnesium (Mg) and sodium (Na). This hypothesis was verified based on 12 field experiments conducted on four farms in Poland during the seasons 2010–2012. The effect of different K, Na and Mg ratios in fertilizers applied in the total rate of 3205 mol/ha on beet yield (BY), storage root quality and white sugar yield (WSY) was determined. The tested K:Mg:Na cation ratios were as follows: 1:0:0; 1:0.11:0.09; 1:0.16:0.54 and 1:0.33:2.19. BY and WSY were affected by the total rate of the applied cations. The optimum ratio of K:Mg:Na was different with respect to the site and the growing season. The K rate reduction from 125 to 24 kg/ha combined with the simultaneous increase in the rate of Mg and Na did not result in lower BY. However, a too narrow K:Na ratio in applied fertilizers resulted in a decrease of sucrose content in storage roots. The fertilization cost for sugar beet production could be reduced through the application of fertilizers that contain fixed amounts of Na on soils rich in available K.  

2003 ◽  
Vol 128 (6) ◽  
pp. 846-855 ◽  
Author(s):  
A.D. Bryan ◽  
Z. Pesic-VanEsbroeck ◽  
J.R. Schultheis ◽  
K.V. Pecota ◽  
W.H. Swallow ◽  
...  

Decline in sweetpotato yield and storage root quality has been attributed to the accumulation of viruses, pathogens and mutations. To document the effects of decline on yield and storage root quality, two micropropagated, virus-indexed, greenhouse produced G1 `Beauregard' meristem-tip cultured clones, B94-14 and B94-34, were compared with 1) micropropagated B94-14 and B94-34 clones propagated adventitiously up to five years in the field (G2, G3, G4, G5); and 2) nonmicropropagated, unimproved stock of `Beauregard' seed in field trials during 1997 to 2001. At least three trials were located each year in sweetpotato producing regions in North Carolina. In 2000 and 2001, two trials were monitored weekly for foliar symptoms of Sweet potato feathery mottle virus (SPFMV) and other potyviruses, and virus-indexed for selected viruses using Ipomoea setosa and nitrocellulose enzyme linked immunosorbant assays (NCM-ELISA). Only SPFMV was detected in field samples using NCM-ELISA, but this does not rule out the presence of newly described viruses infecting sweetpotato for which tests were unavailable. Monitoring indicated that all G1 plants became infected with SPFMV by the end of the growing season, and that G2 to G5 plants were probably infected in their initial growing season. G1 plants consistently produced higher total yield, total marketable yield (TMY), U.S. No. 1 root yield and percent No. 1 yield than G2 to G5 plants. G1 plants also produced storage roots with more uniform shapes and better overall appearance than storage roots produced from G2 to G5 plants. Also, G2 to G5 storage roots tended to be longer than G1 storage roots. Rank mean yield and storage root quality measurements of each location were consistent with means averaged over locations per year and suggested a decrease in yield and storage root quality with successive seasons of adventitious propagation. Linear regression analysis used to model yield and storage root quality measurements of seed generations G1 to G5 indicated that total yield, TMY, No. 1 yield, percent No. 1 yield, shape uniformity, and overall appearance decreased gradually, and that length/diameter ratios increased gradually with generation. The rate of decline in No. 1 yield was greater for B94-34 compared to B94-14. Both viruses and mutations of adventitious sprouts arising from storage roots probably contribute to cultivar decline in sweetpotato, but further studies are needed to determine their relative importance. A simple profitability analysis for G1 vs. G2-G4 planting material conducted to facilitate better understanding of the economics of using micropropagated planting material to produce a crop in North Carolina revealed that growers have a potential net return of $2203/ha for G1 plants, $5030/ha for G2 plants, and $4394/ha for G5 plants. Thus, while G1 plants generally produce higher No. 1 yields, a greater monetary return can be achieved using G2 planting materials because of the high costs associated with producing G1 plants. Based on this analysis, the best returns are accrued when growers plant their crop using G2 and/or G3 seed.


2013 ◽  
Vol 152 (2) ◽  
pp. 177-187 ◽  
Author(s):  
J. T. TSIALTAS ◽  
N. MASLARIS

SUMMARYFrom 1999 to 2006, 36 field experiments were conducted in five sugar beet growing areas in Greece (Larissa, Plati, Serres, Xanthi and Orestiada) to monitor yield. Locations differed significantly regarding thermal variables during the growing season with Xanthi having the most favourable thermal conditions (Tmax, average daily maximum temperature;Tmean, average daily mean temperature; GDD, growing degree days) for sugar beet growth. From early June to the end of the harvesting campaign, successive harvests were conducted. Over the years, fresh root weight and sugar yield at the last harvest of the season (FRWLH, SYLH) did not differ significantly among locations. Also, there were no significant differences among locations regarding GDD for maximum FRW and SY (GDDMFRW, GDDMSY), with the means over location estimated at 2639·9 and 2792·5 °C, respectively. Days after seeding (DAS) necessary for maximum yield (DASMFRW, DASMSY, respectively) differed among locations, with the longest period (DASMFRW206·4 days, DASMSY: 204·5 days) occurring in the northernmost location (Orestiada). Means for DASMFRWand DASMSYat the five locations were estimated at 190·4 and 188·9·days, respectively. Excluding Xanthi and combining the remaining locations, FRWLHand SYLHwere negatively correlated with the average temperatures (Tmean,TmaxandTmin, daily minimum temperature) over the growing season. The opposite was evident for Xanthi where sugar beet was grown under sub-optimal temperatures. The optimum meanTmaxof the five locations was estimated at 25·5 and 25·1 °C for FRWLHand SYLH, respectively. Elongation of the growing season, by means of early sowing, would increase yield by decreasing average temperatures (Tmean,Tmax) over the growing season in locations with the highest recorded temperatures (Larissa, Plati, Serres and Orestiada). In Xanthi, the projected temperature increase, as a result of climate change, is expected to have a positive effect on yields.


2013 ◽  
Vol 27 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Peter J. Dittmar ◽  
David W. Monks ◽  
Katherine M. Jennings ◽  
Jonathan R. Schultheis

Field studies were conducted to determine the effect of halosulfuron at 0, 13, 26, 39 or 52 g ha−1 applied 10, 22, and 31 d after planting (DAP) on ‘Beauregard' and ‘Covington' sweetpotato. Storage roots were harvested, graded, cured, and stored in controlled environment for 2 mo. Where injury on storage roots was observed, external injury occurred on the surface of the storage root as a blackened area with blistering and internal injury consisted of small red-brown spots inside the sweetpotato storage root. Total yield of sweetpotato with 13 g ha−1 halosulfuron treatment (155,157 kg ha−1) was similar to the nontreated check (162,002 kg ha−1). However, halosulfuron rates above 13 g ha−1 resulted in a reduction of marketable grade roots and total yield of sweetpotato. Regardless of rate and timing of halosulfuron, external and internal injury to Beauregard storage roots was less than 6 and 9%, respectively. No external injury to Covington was observed from all rates of halosulfuron applied POST at 10 DAP. Halosulfuron at 22 DAP to Covington caused greater external injury to storage roots than was observed on the nontreated. Thus, Beauregard appears more tolerant to halosulfuron POST than Covington. To minimize internal or external injury to storage roots of Covington, halosulfuron must be applied within 10 DAP.


1990 ◽  
Vol 115 (2) ◽  
pp. 288-293 ◽  
Author(s):  
Ajmer S. Bhagsari ◽  
Doyle A. Ashley

Field experiments with 15 sweet potato [Ipomoea batatas L. (Lam.)] genotypes were conducted to study the physiological basis of yield in 1981 and 1982. The leaf area index differed significantly among the sweet potato genotypes during early and late phases of growth, hut showed an inconsistent relationship with yield. Single leaf net photosynthesis ranged from 0.74 to 1.12 mg CO2/m' per sec. Canopy photosynthesis for sweet potato genotypes differed significantly in 1981, but not in 1982. It ranged from 0.81 to 1.16 mg CO2/m2 per sec in Aug. 1981. and from 0.63 to 0.88 mg CO2/m2 per sec in 1982. Four hours after “C-labeling, 14C-assimilate translocation from the treated leaf ranged from 21% to 46%, but did not differ significantly among the genotypes. At final harvest, harvest index [HI, defined as (storage root yield/total biological yield) × 100] of the genotypes varied from 43% to 77% and 31% to 75% for 1981 and 1982, respectively. Canopy photosynthesis during September was significantly correlated with storage root dry matter yield (r = 0.54*) in 1981 and with phytomass (above-ground biomass plus storage roots) (r = 0.60*) in 1982. Both phytomass and HI were significantly correlated with storage root matter yield. Canopy photosynthetic evaluation of sweet potato germplasm may be-more relevant when the storage root sinks are at an advanced stage of development. Our study suggests that yield is poorly predicted by Pn, particularly when the genotypes have different leaf sizes.


1973 ◽  
Vol 81 (2) ◽  
pp. 267-275 ◽  
Author(s):  
A. P. Draycott ◽  
D. J. Webb ◽  
E. M. Wright

SummaryFour field experiments (1968–71) investigated the effect of changing the length of the growing period on the nitrogen fertilizer requirement of sugar beet. The crop was sown on three occasions (March–May), harvested on three occasions (September–December) and given four amounts of fertilizer (0–225 kg N/ha). Plant samples were analysed at several stages of growth (1969–71) in an attempt to predict the amount of nitrogen fertilizer needed for maximum sugar yield and also at the end of the season to determine the nitrogen uptake. Increasing the length of the growing period increased sugar yield greatly but the amount of nitrogen fertilizer needed for maximum sugar yield was unchanged. The crop given the largest dressing of nitrogen and with the longest growing period contained most total nitrogen, but in every experiment, giving more than 75 kg N/ha neither increased nor decreased the sugar yield significantly. As a result of the small variations in nitrogen requirement, the plant analyses during the growing season were of little value in predicting the needs of the crop.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 768F-768
Author(s):  
P.P. David ◽  
A.A. Trotman ◽  
D.G. Mortley ◽  
D. Douglas ◽  
J. Seminara

A study was initiated in the greenhouse to examine the effects of five \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios on sweetpotato growth. Plants were grown from vine cuttings of 15-cm length, planted in 0.15 x 0.15 x 1.2-m growth channels using a closed nutrient film technique system. Nutrient was supplied in a modified half-strength Hoagland's solution with a 1:2:4 N:K ratio. \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} ratios investigated were 100:0, 0:100, 40:60, 60:40, and a control that consisted of a modified half-Hoagland solution with an N:K ratio of 1:2:4 and an \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}:\mathrm{NO}_{3}^{-}\) \end{document} of 1:7. Treatments were initiated 30 days after planting (DAP). Sequential plant harvest began 30 DAP and continued at 30-day intervals until final harvest at 150 DAP. Results showed a linear increase in fresh storage root fresh weight until 90 DAP for all treatments. However, from 60 DAP until the end of the growing season, plants grown in a 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NH}_{4}^{+}\) \end{document} solution consistently produced significantly less storage roots than in all other treatments. While all other treatments showed a decrease in storage root fresh weight after 90 DAP, plants grown in 100% \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{NO}_{3}^{-}\) \end{document} and the control solution continued to increase linearly in storage root production. Storage root dry weight throughout the growing season followed similar trends to that of storage root fresh weight. Data suggest that a nutrient solution containing NO–3as its sole nitrogen source may be adequate for sweetpotato growth. This would make it possible for utilizing a one-way pH control method for nutrient solution.


1952 ◽  
Vol 42 (3) ◽  
pp. 286-292 ◽  
Author(s):  
H. L. Penman

It is assumed that maximum growth requires maximum transpiration, and that maximum transpiration can be maintained by keeping the soil near to field capacity throughout the growing season. Transpiration rates can be calculated from weather data (the basic principles are outlined and an example of the calculation given), and the paper describes four field experiments in which attempts were made to control the water content of the soil throughout the growing season, by irrigation from overhead spray-lines.In spite of differences in season and soil, the four sets of data are consistent in showing that maximum sugar yield is obtained when the soil-moisture deficit (amount of rain or irrigation needed restore the soil to field capacity) does not exceed about 2 in. in mid-July, or about 4 in. in mid-September.


2017 ◽  
pp. 420-425 ◽  
Author(s):  
Christa Hoffmann

The high yield level sugar beet has reached in the past years might have altered the morphology of the storage root. The study thus aimed at analyzing storage root diameter and length in relation to yield under various environmental conditions. For that purpose, data of various field and pot experiments were included covering a broad range of storage root diameters and yield levels of sugar beet. It turned out that there was a close relationship between storage root diameter and root yield, which was not affected by different environmental conditions (site, year). Furthermore, breeding progress had obviously not changed this relation, as it was not affected by varieties. Results from pot experiments could well be compared with field trial data. In field trials, storage root length did not exceed 25cm independent of yield level, whereas in pot experiments plants formed longer storage roots with higher yield levels. It is discussed that increasing penetration resistance in soil could limit the further expansion of the storage root diameter. A more aboveground growth of the storage root with increasing yield level, however, will make yield estimates based on root diameter more difficult.


2009 ◽  
Vol 147 (6) ◽  
pp. 669-682 ◽  
Author(s):  
M. LAUNAY ◽  
A.-I. GRAUX ◽  
N. BRISSON ◽  
M. GUERIF

SUMMARYCarbohydrate remobilization from the sugar beet storage root to support leaf regrowth after release from water stress was demonstrated by experimental and modelling approaches. Experimental trials were carried out in northern France in 1994 and 1995 and in southern France in 2005, in conditions that involved a succession of soil moisture stresses and re-hydrations. Drought stress slowed leaf growth and the subsequent release of stress resulted in regrowth. A second trial showed that after total defoliation, sugar beet was able to produce new leaves. It was assumed that this leaf renewal, observed at drought stress release or after defoliation, relied on the possibility of remobilizing carbohydrates from storage roots to above-ground organs. This assumption was tested through a heuristic modelling approach, involving the STICS crop model and its existing sub-model on remobilization. The relevance of these formalizations for sugar beet was tested on the experimental data to validate the plant behaviour concerning remobilization. The model succeeded in reproducing leaf area index (LAI) dynamic trends and particularly leaf re-growth after drought stress release or defoliation, despite an over-estimation of the drought stress effect involving an inaccurate simulation of the changes in LAI. Nevertheless, the model's ability to forecast accurately above-ground and storage root dry weight, as well as trends in LAI dynamics, showed that the assumptions made about remobilization were able to explain sugar beet behaviour.


1983 ◽  
Vol 55 (5) ◽  
pp. 431-450
Author(s):  
Mauritz Vestberg ◽  
Risto Tahvonen ◽  
Kyösti Raininko

In pot and field experiments carried out in 1979-1981, the systemic funqicide hymexazol prevented satisfactorily soil borne damping-off of sugar beet caused mainly by the fungus Pythium debaryanum auct. non Hesse. The results with the combination hymexazol + thiram were still better. This treatment gave very good protection against the disease up to about two to three weeks after emergence, increased the yield on the average by 5-10 % and produced considerably thicker and denser stands. Thereafter a large number of beets may have become infected, but no great damage was caused as only few died. Band spraying at emergence using hymexazol with a large amount of water as well as spraying into the seed furrow prevented the outbreak of the disease almost completely. Liming had little effect on damping-off.


Sign in / Sign up

Export Citation Format

Share Document