scholarly journals Barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.) resistance to acetolactate synthase-inhibiting and other herbicides in rice in Turkey

2020 ◽  
Vol 66 (No. 7) ◽  
pp. 357-365
Author(s):  
Koray Kacan ◽  
Nihat Tursun ◽  
Hayat Ullah ◽  
Avishek Datta

Barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.) is one of the most yield-limiting weeds in rice in Turkey. Barnyardgrass resistance to common herbicides has been reported worldwide; however, such information is largely lacking in the country. The objective of this study was to determine the resistance spectrum of different barnyardgrass populations to the most commonly-used herbicides in rice in Turkey. The susceptibility of 40 barnyardgrass populations was evaluated. The samples were collected from fields with intensive rice cultivation in Balıkesir and Çanakkale provinces. Seeds were picked from barnyardgrass plants suspected to be herbicide-resistant because of their survival in the rice fields after herbicides application. A total of 38 populations were resistant to penoxsulam, and the resistance index of these populations ranged from 2 to 39. A total of 24 out of the 38 barnyardgrass populations showed a GR<sub>50</sub> (herbicide dose causing a 50% reduction in plant dry matter) value higher than the recommended penoxsulam dose (20.2 g a.i./ha) in rice. Among these 24 barnyardgrass populations, 25, 29.2 and 45.8% populations exhibited high, moderate and low level of penoxsulam resistance, respectively. From the penoxsulam-resistant populations (38), the response of 14 populations (low to high resistance to penoxsulam) to six commonly-used herbicides for barnyardgrass control in rice was evaluated. The selected 14 populations showed resistance to almost all herbicides tested, with the lowest average resistance being determined against profoxydim and the highest average resistance against molinate herbicide. Resistance levels against six commonly-used herbicides in rice ranged from 2 to 34.  

Weed Science ◽  
2021 ◽  
pp. 1-25
Author(s):  
Qian Yang ◽  
Xia Yang ◽  
Zichang Zhang ◽  
Jieping Wang ◽  
Weiguo Fu ◽  
...  

Abstract Barnyardgrass (Echinochloa crus-galli) is a noxious grass weed which infests rice fields and causes huge crop yield losses. In this study, we collected twelve E. crus-galli populations from rice fields of Ningxia province in China and investigated the resistance levels to acetolactate synthase (ALS) inhibitor penoxsulam and acetyl-CoA carboxylase (ACCase) inhibitor cyhalofop-butyl. The results showed that eight populations exhibited resistance to penoxsulam and four populations evolved resistance to cyhalofop-butyl. Moreover, all of the four cyhalofop-butyl-resistant populations (NX3, NX4, NX6 and NX7) displayed multiple-herbicide-resistance (MHR) to both penoxsulam and cyhalofop-butyl. The alternative herbicides bispyribac-sodium, metamifop and fenoxaprop-P-ethyl cannot effectively control the MHR plants. To characterize the molecular mechanisms of resistance, we amplified and sequenced the target-site encoding genes in resistant and susceptible populations. Partial sequences of three ALS genes and six ACCase genes were examined. A Trp-574-Leu mutation was detected in EcALS1 and EcALS3 in two high-level (65.84- and 59.30-fold) penoxsulam-resistant populations NX2 and NX10, respectively. In addition, one copy (EcACC4) of ACCase genes encodes a truncated aberrant protein due to a frameshift mutation in E. crus-galli populations. None of amino acid substitutions that are known to confer herbicide resistance were detected in ALS and ACCase genes of MHR populations. Our study reveals the widespread of multiple-herbicide resistant E. crus-galli populations at Ningxia province of China that exhibit resistance to several ALS and ACCase inhibitors. Non-target-site based mechanisms are likely to be involved in E. crus-galli resistance to the herbicides, at least in four MHR populations.


2012 ◽  
Vol 52 (3) ◽  
pp. 308-313 ◽  
Author(s):  
Ilias Travlos

Evaluation of Herbicide-Resistance Status on Populations of Littleseed Canarygrass (Phalaris MinorRetz.) from Southern Greece and Suggestions for their Effective ControlIn 2010, a survey was conducted in the wheat fields of a typical cereal-producing region of Greece to establish the frequency and distribution of herbicide-resistant littleseed canarygrass (Phalaris minorRetz.). In total, 73 canarygrass accessions were collected and screened in a field experiment with several herbicides commonly used to control this weed. Most of the weed populations were classed as resistant (or developing resistance) to the acetyl-CoA varboxylase (ACCase)-inhibiting herbicide diclofop, while resistance to clodinafop was markedly lower. The results of the pot experiments showed that some of the canary populations were found to have a very high level of diclofop resistance (resistance index up to 12.4), while cross resistance with other herbicides was also common. The levels of resistance and cross resistance patterns among populations varied along with the different amounts and times of selection pressure. Such variation indicated either more than one mechanism of resistance or different resistance mutations in these weed populations. The population which had the highest diclofop resistance level, showed resistance to all aryloxyphenoxypropinate (APP) herbicides applied and non-ACCase inhibitors. Alternative ACCase-inhibiting herbicides, such as pinoxaden remain effective on the majority of the tested canarygrass populations, while the acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron + iodosulfuron could also provide some solutions. Consequently, there is an opportunity to effectively control canarygrass by selecting from a wide range of herbicides. It is the integration of agronomic practices with herbicide application, which helps in effective management ofP. minorand particularly its resistant populations.


Weed Science ◽  
2019 ◽  
Vol 67 (6) ◽  
pp. 605-612 ◽  
Author(s):  
Xiangying Liu ◽  
Shihai Xiang ◽  
Tao Zong ◽  
Guolan Ma ◽  
Lamei Wu ◽  
...  

AbstractThe widespread, rapid evolution of herbicide-resistant weeds is a serious and escalating agronomic problem worldwide. During China’s economic boom, the country became one of the most important herbicide producers and consumers in the world, and herbicide resistance has dramatically increased in the past decade and has become a serious threat to agriculture. Here, following an evidence-based PRISMA (preferred reporting items for systematic reviews and meta-analyses) approach, we carried out a systematic review to quantitatively assess herbicide resistance in China. Multiple weed species, including 26, 18, 11, 9, 5, 5, 4, and 3 species in rice (Oryza sativa L.), wheat (Triticum aestivum L.), soybean [Glycine max (L.) Merr.], corn (Zea mays L.), canola (Brassica napus L.), cotton (Gossypium hirsutum L.)., orchards, and peanut (Arachis hypogaea L.) fields, respectively, have developed herbicide resistance. Acetolactate synthase inhibitors, acetyl-CoA carboxylase inhibitors, and synthetic auxin herbicides are the most resistance-prone herbicides and are the most frequently used mechanisms of action, followed by 5-enolpyruvylshikimate-3-phosphate synthase inhibitors and protoporphyrinogen oxidase inhibitors. The lack of alternative herbicides to manage weeds that exhibit cross-resistance or multiple resistance (or both) is an emerging issue and poses one of the greatest threats challenging the crop production and food safety both in China and globally.


2005 ◽  
Vol 19 (3) ◽  
pp. 674-682 ◽  
Author(s):  
Bradley D. Hanson ◽  
Carol A. Mallory-Smith ◽  
William J. Price ◽  
Bahman Shafii ◽  
Donald C. Thill ◽  
...  

The transfer of herbicide resistance genes from crops to related species is one of the greatest risks of growing herbicide-resistant crops. The recent introductions of imidazolinone-resistant wheat in the Great Plains and Pacific Northwest regions of the United States and research on transgenic glyphosate-resistant wheat have raised concerns about the transfer of herbicide resistance from wheat to jointed goatgrass via introgressive hybridization. Field experiments were conducted from 2000 to 2003 at three locations in Washington and Idaho to determine the frequency and distance that imidazolinone-resistant wheat can pollinate jointed goatgrass and produce resistant F1hybrids. Each experiment was designed as a Nelder wheel with 16 equally spaced rays extending away from a central pollen source of ‘Fidel-FS4’ imidazolinone-resistant wheat. Each ray was 46 m long and contained three rows of jointed goatgrass. Spikelets were collected at maturity at 1.8-m intervals along each ray and subjected to an imazamox screening test. The majority of all jointed goatgrass seeds tested were not resistant to imazamox; however, 5 and 15 resistant hybrids were found at the Pullman, WA, and Lewiston, ID, locations, respectively. The resistant plants were identified at a maximum distance of 40.2 m from the pollen source. The overall frequency of imazamox-resistant hybrids was similar to the predicted frequency of naturally occurring acetolactate synthase resistance in weeds; however, traits with a lower frequency of spontaneous mutations may have a relatively greater risk for gene escape via introgressive hybridization.


Agronomy ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 874
Author(s):  
Marta Stankiewicz-Kosyl ◽  
Agnieszka Synowiec ◽  
Małgorzata Haliniarz ◽  
Anna Wenda-Piesik ◽  
Krzysztof Domaradzki ◽  
...  

Corn poppy (Papaver rhoeas L.) and cornflower (Centaurea cyanus L.) are two overwintering weed species found in crop fields in Europe. They are characterised by a similar life cycle, similar competitive efforts, and a spectrum of herbicides recommended for their control. This review summarises the biology and herbicide resistance phenomena of corn poppy and cornflower in Europe. Corn poppy is one of the most dangerous dicotyledonous weeds, having developed herbicide resistance to acetolactate synthase inhibitors and growth regulators, especially in Mediterranean countries and Great Britain. Target site resistance to acetolactate synthase inhibitors dominates among herbicide-resistant poppy biotypes. The importance of non-target site resistance to acetolactate synthase inhibitors in this species may be underestimated because non-target site resistance is very often associated with target site resistance. Cornflower, meanwhile, is increasingly rare in European agricultural landscapes, with acetolactate synthase inhibitors-resistant biotypes only listed in Poland. However, the mechanisms of cornflower herbicide resistance are not well recognised. Currently, herbicides mainly from acetolactate synthase and photosystem II inhibitors as well as from synthetic auxins groups are recommended for the control of both weeds. Integrated methods of management of both weeds, especially herbicide-resistant biotypes, continue to be underrepresented.


2017 ◽  
Vol 32 (1) ◽  
pp. 34-44 ◽  
Author(s):  
Christopher E. Rouse ◽  
Nilda Roma-Burgos ◽  
Jason K. Norsworthy ◽  
Te-Ming Tseng ◽  
Clay E. Starkey ◽  
...  

AbstractHerbicide-resistantEchinochloaspp. pose a significant threat to U.S. rice production. Two surveys were conducted to characterizeEchinochloaresistance to common rice herbicides and provide important demographic information on the populations in Arkansas: one was theEchinochloa Herbicide Resistance Confirmation Surveyconducted annually since 2006; the other was theEchinochloa Herbicide Resistance Demographics Surveyconducted since 2010. TheResistance Confirmation Surveyshowed that resistance to propanil (50%) was most prevalent, followed by quinclorac (23%), imazethapyr (13%), and cyhalofop (3%). Multiple resistance increased with time, with 27% of accessions being multiple-resistant, mostly to propanil+quinclorac (12%). The parallelResistance Demographics Surveytested resistance by species. Of the 264 accessions collected, 73% were junglerice, 14% were rough barnyardgrass, and 11% were barnyardgrass. Overall, this survey also showed resistance to propanil (53%) and quinclorac (28%) being most prevalent, with low frequencies of resistance to cyhalofop (12%) and imazethapyr (6%). Resistance to herbicides was less frequent with barnyardgrass (54%) and rough barnyardgrass (28%) than with junglerice (73%). Multiple resistance was most frequent with junglerice (33%) and least frequent with rough barnyardgrass (8%). Across both surveys, the resistance cases were clustered in the northeast and Grand Prairie regions of the state. Herbicide resistance amongEchinochloapopulations in rice fields is continuing to increase in frequency and complexity. This is a consequence of sequential selection with different major herbicide sites of action, starting with propanil followed by quinclorac and others.


2012 ◽  
Vol 26 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Peter Boutsalis ◽  
Gurjeet S. Gill ◽  
Christopher Preston

Herbicide resistance in rigid ryegrass is an escalating problem in grain-cropping fields of southeastern Australia due to increased reliance on herbicides as the main method for weed control. Weed surveys were conducted between 1998 and 2009 to identify the extent of herbicide-resistant rigid ryegrass across this region to dinitroaniline, and acetolactate synthase- and acetyl coenzyme A (CoA) carboxylase-inhibiting herbicides. Rigid ryegrass was collected from cropped fields chosen at random. Outdoor pot studies were conducted during the normal winter growing season for rigid ryegrass with PRE-applied trifluralin and POST-applied diclofop-methyl, chlorsulfuron, tralkoxydim, pinoxaden, and clethodim. Herbicide resistance to trifluralin in rigid ryegrass was identified in one-third of the fields surveyed from South Australia, whereas less than 5% of fields in Victoria exhibited resistance. In contrast, resistance to chlorsulfuron was detected in at least half of the cropped fields across southeastern Australia. Resistance to the cereal-selective aryloxyphenoxypropionate-inhibiting herbicides diclofop-methyl, tralkoxydim, and pinoxaden ranged between 30 and 60% in most regions, whereas in marginal cropping areas less than 12% of fields exhibited resistance. Resistance to clethodim varied between 0 and 61%. Higher levels of resistance to clethodim were identified in the more intensively cropped, higher-rainfall districts where pulse and canola crops are common. These weed surveys demonstrated that a high incidence of resistance to most tested herbicides was present in rigid ryegrass from cropped fields in southeastern Australia, which presents a major challenge for crop producers.


Weed Science ◽  
2021 ◽  
pp. 1-33
Author(s):  
Lucas K. Bobadilla ◽  
Andrew G. Hulting ◽  
Pete A Berry ◽  
Marcelo L. Moretti ◽  
Carol Mallory-Smith

Abstract Italian ryegrass [Lolium perenne L. spp. multiflorum (Lam.) Husnot] is one of the most troublesome weeds worldwide. L. multiflorum is also a grass seed crop cultivated on 50,000 ha in Oregon, where both diploid and tetraploid cultivars are grown. A survey was conducted to understand the distribution, frequency, and susceptibility of L. multiflorum to selected herbicides used to control L. multiflorum. The herbicides selected were clethodim, glufosinate, glyphosate, mesosulfuron-methyl (mesosulfuron), paraquat, pinoxaden, pyroxsulam, quizalofop-P-ethyl (quizolafop), pronamide, flufenacet + metribuzin, and pyroxasulfone. The ploidy levels of the populations were also tested. A total of 150 fields were surveyed between 2017 and 2018, of which 75 (50%) had L. multiflorum present. Herbicide-resistant populations were documented in 88% of the 75 populations collected. The most frequent mechanisms of action were resistance to Acetyl-CoA carboxylase (ACCase), Acetolactate Synthase (ALS), 5-enolpyruvylshikimate-3-phosphate (EPSPs) inhibitors, and combinations thereof. Multiple and cross-resistance, found in 75% of the populations, were the most frequent patterns of resistance. Paraquat-resistant biotypes were confirmed in six orchard crop populations for the first time in Oregon. Herbicide resistance was spatially clustered, with most cases of resistance in the northern part of the surveyed area. ALS and ACCase resistant populations were prevalent in wheat (Triticum aestivum L.) fields. Multiple-resistance was positively correlated with plant density. Tetraploid feral populations were identified, but no cases of herbicide resistance were documented. This is the first survey of herbicide resistance and ploidy diversity in L. multiflorum in western Oregon. Resistant populations were present across the surveyed area, indicating that the problem is widespread.


Weed Science ◽  
2015 ◽  
Vol 63 (4) ◽  
pp. 748-757 ◽  
Author(s):  
Dilpreet S. Riar ◽  
Parsa Tehranchian ◽  
Jason K. Norsworthy ◽  
Vijay Nandula ◽  
Scott McElroy ◽  
...  

Overuse of acetolactate synthase (ALS)–inhibiting herbicides in rice has led to the evolution of halosulfuron-resistant rice flatsedge in Arkansas and Mississippi. Resistant accessions were cross-resistant to labeled field rates of ALS-inhibiting herbicides from four different families, in comparison to a susceptible (SUS) biotype. Resistance index of Arkansas and Mississippi accessions based on an R/S ratio of the lethal dose required for 50% plant mortality (LD50) to bispyribac-sodium, halosulfuron, imazamox, and penoxsulam was ≥ 21-fold. Control of Arkansas, Mississippi, and SUS accessions with labeled field rates of 2,4-D, bentazon, and propanil was ≥ 93%. An enzyme assay revealed that an R/S ratio for 50% inhibition (I50) of ALS for halosulfuron was 2,600 and 200 in Arkansas and Mississippi, respectively. Malathion studies did not reveal enhanced herbicide metabolism in resistant plants. The ALS enzyme assay and cross-resistance studies point toward altered a target site as the potential mechanism of resistance. Trp574–Leu amino acid substitution within the ALS gene was found in both Arkansas and Mississippi rice flatsedge accessions using the Illumina HiSeq platform, which corresponds to the mechanism of resistance found in many weed species. Field-rate applications of 2,4-D, bentazon, and propanil can be used to control these ALS-resistant rice flatsedge accessions.


Author(s):  
Charles M. Geddes ◽  
Robert H. Gulden ◽  
Tammy Jones ◽  
Julia Yvonne Leeson ◽  
Mattea M. Pittman ◽  
...  

Recent confirmations of glyphosate-resistant Russian thistle (<i>Salsola tragus</i> L.) in Montana, Washington, and Oregon, warrant greater surveillance of herbicide-resistant Russian thistle in western Canada. A randomized-stratified survey of 315 sites in Manitoba was conducted in 2018 to determine the incidence of herbicide resistance in Russian thistle and other weeds sampled post-harvest. Russian thistle populations were collected from 14 of the 315 sites surveyed. None of these populations exhibited resistance to acetolactate synthase inhibitors (tribenuron/thifensulfuron), synthetic auxins (2,4-D ester or fluroxypyr), or glyphosate. This Manitoba survey of herbicide-resistant Russian thistle serves as a baseline for future surveillance efforts.


Sign in / Sign up

Export Citation Format

Share Document