scholarly journals PASSIVE UHF RFID TAGS WITH THERMAL-TRANSFER-PRINTED ANTENNAS

2021 ◽  
Vol 55 (2) ◽  
pp. 277-282
Author(s):  
Juraj Gigac ◽  
Mária Fišerová ◽  
Maroš Kováč ◽  
Svetozár Hegyi

Papers for the thermal transfer printing of UHF RFID antennas were prepared by coating and calendering. Real and imaginary components of the impedance of the UHF RFID antennas depended on their design, coating composition and conditions of paper calendering. Passive UHF RFID tags were constructed from antennas and chips whose real and imaginary components of impedance in the 860–960 MHz frequency band were at approximately the same level. The communication quality of passive UHF RFID tags was evaluated by measuring the reading range using the designed UHF RFID reading unit. The reading range of experimental UHF RFID tags with printed antennas on paper and commercial UHF RFID tags with chemically etched antennas on a PET film were identical in the 860 MHz frequency.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
M. Akbari ◽  
H. He ◽  
J. Juuti ◽  
M. M. Tentzeris ◽  
J. Virkki ◽  
...  

This paper introduces 3D direct writing and microdispensing of graphene ultrahigh frequency (UHF) radio-frequency-identification (RFID) antennas on textile, wood, and cardboard substrates, subsequently cured either by conventional oven or photonically by pulsed Xenon flashes. Photonic-cured passive UHF RFID graphene tags on cardboard, wood, and textile substrates achieve read ranges of 5.4, 4.6, and 4 meters, respectively. These results are superior to those achieved by the oven-cured tags that featured read ranges of 4.8, 4.5, and 3.6 meters, respectively. This work presents the first integration of 3D printing and photonic curing of graphene antennas on low-cost versatile substrates.


2017 ◽  
Vol 26 (3) ◽  
pp. 735-745 ◽  
Author(s):  
K. Siakavara ◽  
S. Goudos ◽  
A. Theopoulos ◽  
J. N. Sahalos

2017 ◽  
Vol 2017 ◽  
pp. 1-5 ◽  
Author(s):  
Han He ◽  
Mitra Akbari ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen ◽  
Johanna Virkki

We present the possibilities of 3D direct-write dispensing in the fabrication of passive UHF RFID graphene tags on a textile substrate. In our method, the graphene tag antenna is deposited directly on top of the IC strap, in order to simplify the manufacturing process by removing one step, that is, the IC attachment with conductive glue. Our wireless measurement results confirm that graphene RFID tags with printed antenna-IC interconnections achieve peak read ranges of 5.2 meters, which makes them comparable to graphene tags with epoxy-glued ICs. After keeping the tags in high humidity, the read ranges of the tags with epoxy-glued and printed antenna-IC interconnections decrease 0.8 meters and 0.5 meters, respectively. However, after drying, the performance of both types of tags returns back to normal.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Han He ◽  
Lauri Sydänheimo ◽  
Johanna Virkki ◽  
Leena Ukkonen

We present the possibilities and challenges of passive UHF RFID tag antennas manufactured by inkjet printing silver nanoparticle ink on versatile paper-based substrates. The most efficient manufacturing parameters, such as the pattern resolution, were determined and the optimal number of printed layers was evaluated for each substrate material. Next, inkjet-printed passive UHF RFID tags were fabricated on each substrate with the optimized parameters and number of layers. According to our measurements, the tags on different paper substrates showed peak read ranges of 4–6.5 meters and the tags on different cardboard substrates exhibited peak read ranges of 2–6 meters. Based on their wireless performance, these inkjet-printed paper-based passive UHF RFID tags are sufficient for many future wireless applications and comparable to tags fabricated on more traditional substrates, such as polyimide.


RFID is a short distance communication system which comprises of a RFID tag, a RFID reader and a personal computer with desired software that can maintain the related information. These RFID tags can be of active or passive types. This paper focuses on design, simulation and fabrication of passive ultra-high frequency RFID tag (microchip and an antenna) which resonates at the frequency 866 MHz in the Industrial Scientific Medical Band. The nested H-slot inverted-F microstrip antenna structure is used for the design of passive RFID tag. It examines the specific tag geometry and its characteristics to optimize the PIFA antenna and in turn RFID tag’s performance.


Author(s):  
He Xu ◽  
Ye Ding ◽  
Peng Li ◽  
Ruchuan Wang

In recent years, indoor position has been an important role in many applications, such as production management, store management and shelves in supermarket or library. Much time and energy are exhausted because one object cannot be quickly and accurately located. Traditional indoor position systems have some problems, such as complicated software and hardware system, inaccurate position and high time complexity. In this paper, the authors propose an RFID-based collaborative information system, Tagrom, for indoor localization using COTS RFID readers and tags. Unlike former methods, Tagrom works with reference tags and phase of Passive UHF-RFID tags, which improves traditional distribution of reference tags and utilize RF phase replace of traditional RSSI or multipath profile to determine the position of target RFID tags.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Shiqi Wang ◽  
Ngai Lok Chong ◽  
Johanna Virkki ◽  
Toni Björninen ◽  
Lauri Sydänheimo ◽  
...  

We investigate the impact of washing on the performance of passive UHF RFID tags based on dipole antennas fabricated from copper fabric and coated with protective epoxy coating. Initially, the tags achieved read ranges of about 8 meters, under the European RFID emission regulation. To assess the impact of washing on the performance of the tags, they were washed repeatedly in a washing machine and measured after every washing cycle. Despite the reliability challenges related to mechanical stress, the used epoxy coating was found to be a promising coating for electrotextile tags in moist conditions.


Sign in / Sign up

Export Citation Format

Share Document