scholarly journals Greenhouse Environmental Control Using Optimized, Modeled and Simulated Fuzzy Logic Controller Technique in MATLAB SIMULINK

2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Didi Faouzi ◽  
N. Bibi-Triki ◽  
B. Draoui ◽  
A. Abène
Author(s):  
Doaa M. Atia ◽  
Hanaa T. El-madany

It is important to have an efficient maximum power point tracking (MPPT) technique to increase the<em> </em>photovoltaic (PV) generation system output efficiency. This paper presents a design of MPPT techniques for<em> </em>PV module to increase its efficiency. Perturb and Observe method (P&amp;O), incremental conductance method (IC), and Fuzzy logic controller (FLC) techniques are designed to be used for MPPT. Also FLC is built using<em> </em>MATLAB/ SIMULINK and compared with the FLC toolbox existed in the MATLAB library. FLC does not<em> </em>need knowledge of the exact model of the system so it is easy to implement. A comparison between different<em> </em>techniques shows the effectiveness of the fuzzy logic controller techniques.  Finally, the proposed FLC is<em> </em>built in very high speed integrated circuit description language (VHDL). The simulation results obtained with<em> </em>ISE Design Suite 14.6 software show a satisfactory performance with a good agreement compared to obtained values from MATLAB/SIMULINK. The good tracking efficiency and rapid response to environmental parameters changes are adopted by the simulation results.


This paper explains the mathematical modelling and controller design of Two Tank Interacting System (TTIS) for a non-linear process. To design the non-linear process using Matlab Simulink and control the process using conventional PID controller and Fuzzy Logic Controller (FLC). A comparative study was conducted extensively made to examine which controller suits well for the non-linear process through the response observed.


2015 ◽  
Vol 789-790 ◽  
pp. 693-699
Author(s):  
Alaa Khalifa ◽  
Ahmed Ramadan

This paper concerns with the control system design for a teleoperated endoscopic surgical manipulator system that uses PHANTOM Omni haptic device as the master and a 4-DOF parallel manipulator (2-PUU_2-PUS) as the slave. PID control algorithm was used to achieve the trajectory tracking, but the error in each actuated joint reached 0.6 mm which is not satisfactory in surgical application. The design of a control algorithm for achieving high trajectory tracking is needed. Simulation on the virtual prototype of the 4-DOF parallel manipulator has been achieved by combining MATLAB/Simulink with ADAMS. Fuzzy logic controller is designed and tested using the interface between ADAMS and MATLAB/Simulink. Signal constraint block adjusted the controller parameters for each actuated prismatic joint to eliminate the overshoot in most of position responses. The simulation results illustrate that the fuzzy logic control algorithm can achieve high trajectory tracking. Also, they show that the fuzzy controller has reduced the error by approximately 50 percent.


Author(s):  
M. Kavitha ◽  
V. Sivachidambaranathan

<p>Interleaved DC-DC converter with coupled inductor is used in standalone Photovoltaic, battery charger/discharger application. The main issue of the Interleaved DC-DC converter is that, it does not provide constant output voltage for a change in input voltage. Therefore, the converter efficiency is reduced. Hence to overcome this drawback, proper controller has to be used. In this paper, different control techniques such as PI, PID and Fuzzy logic controller are used. The simulation results of all three controllers were done using MATLAB/Simulink and compared. Fuzzy logic controller provides better regulated output voltage with less settling time of 0.04sec.</p>


2019 ◽  
Vol 2 (3) ◽  
pp. 134-143
Author(s):  
Ajisman Apen ◽  
Ker Shao Jiun ◽  
Siti Nursyuhada Mahsahirun

Various industrial and domestic applications such as automotive, aerospace,appliances and many others are electrically driven. Conventional methods of motor control had failed to produce desired performance of DC-motor due the system parameters variation and load changes. The Fuzzy-Logic-controller is one of the controllers that can handle non-linear system. This project is aimed to control the speed of a separately-excited DC-motor using fuzzy logic control. The system is simulated on MATLAB-Simulink and implemented on ARDUINO Uno development board.


2018 ◽  
Vol 7 (3.28) ◽  
pp. 116
Author(s):  
Fauzal N. Zohedi ◽  
M. A.Rahmat ◽  
Hyreil A.Kasdirin

This project aims at proposing an innovative way to implement the concept of fuzzy logic to an ABS model. The implementation of this project was conducted using simulation of ABS which is a combination from vehicle speed, wheel speed and slip through MATLAB Simulink software. By implementing fuzzy logic to the ABS system, the fuzzy logic can facilitate in improving the ABS abilities. The ABS model is developed and fuzzy logic controller is implemented to the model. The performance of the Fuzzy ABS is analyzed. The result shows that the fuzzy logic controller can facilitates the performance of the ABS by reducing the stopping time and maintaining the slip value near to 0.2.  


Author(s):  
Sakshi Srivastav, Et. al.

It is very critical and important to maintain the appropriate climatic conditions in the operation theatre. In paper, we present an approach to control total environmental conditions for the operation theatre. Generally for environmental control of operation theatre air conditioning system is installed. In operation theatre environmental parameters like humidity, temperature, oxygen and particles etc. have to be controlled precisely. All the environmental parameters are of nonlinear nature hence, difficult to control or model with the help of conventional control systems. Keeping in mind the complexity and nonlinearity of these parameters as fuzzy logic controller (FLC) for controlling all the environment of operation theatre has been designed. For this fuzzy logic control system temperature, micro particles, humidity & oxygen have been taken as input parameters and based on these parameters  speed of AC motor as well as the speed of exhaust motor are controlled. The control system is implemented with the help of different fuzzy rules and their membership functions derived from actual conditions. The performance of the system for control of operation theatre was studied and it has been observed that the result obtained with the fuzzy logic control system provides more effective and economical control. The fuzzy logic control system has been implemented using fuzzy Tech development tool.


2010 ◽  
Vol 44-47 ◽  
pp. 1496-1499 ◽  
Author(s):  
Rui Zhen Gao ◽  
Zhi Qiang Xu ◽  
Jing Jun Zhang

This paper completes a full car semi-active suspension system model, using improved genetic algorithm approach to optimize the fuzzy logic rules and the co-simulation were carried out in the environment of Matlab/Simulink. The results of being compared with the passive suspension demonstrate is that this developed fuzzy logic controller based on genetic algorithm enhances the performance of the full car suspension system significantly.


2014 ◽  
Vol 555 ◽  
pp. 249-258 ◽  
Author(s):  
Victor Vladareanu ◽  
Paul Schiopu ◽  
Shuang Cang ◽  
Hong Nian Yu

The paper proposes an innovative type of fuzzy logic controller for robot actuators, building upon the current state of the art fuzzy architectures and various observations from work with Fuzzy Logic and Extenics Theory. This leads to a modified fuzzy controller, with a significantly simpler rule base, which shows comparable results. The effect is achieved by taking advantage of the rule base makeup of a regular linear fuzzy controller. Some slight modification is needed to the controller architecture, which is explained in detail. The rationality and validity of the proposed model are demonstrated through simulation in the Matlab/Simulink environment. The results show that the proposed new controller architecture obtains remarkable results, while having the advantage of increased simplicity in design and setting of parameters. Throughout the paper, opportunities for further improvement and research are highlighted and discussed.


Sign in / Sign up

Export Citation Format

Share Document