scholarly journals Synthesis and properties of Pt/TiN catalyst for low-temperature air purification from carbon monoxide

2021 ◽  
Vol 6 (2) ◽  
pp. 131-143
Author(s):  
Evgeny N. Kabachkov ◽  
Evgeny N. Kurkin ◽  
Nikolay N. Vershinin ◽  
Igor L. Balikhin ◽  
Viktor I. Berestenko ◽  
...  

Catalysts of carbon monoxide oxidation were synthesized by deposition of platinum on titanium nitride (TiN). Two substrates with an average particle size of 18 and 36 nm were obtained by hydrogen reduction of titanium tetrachloride in a stream of microwave plasma of nitrogen. The surface of the catalysts was studied by X-ray photoelectron spectroscopy (XPS). The data obtained by us in the present work indicate the presence of oxynitride as a transition layer between nitride and oxide. It was found that the CO oxidation rate on the 9–15 wt. % Pt loaded TiN catalysts is 120 times higher than that on the platinum black with a specific surface of 30 m2g–1. Increase in the reaction rate of CO oxidation on Pt/TiN catalysts as compared to platinum black can be associated with both an increase in the concentration of CO molecules adsorbed and a decrease in the activation energy of the reaction. Catalysts are promising for use in catalytic air purification systems.

2021 ◽  
pp. 72-77
Author(s):  
Tien Hiep Nguyen ◽  
◽  
Van Minh Nguyen ◽  

In this work the kinetics of synthesizing process of metallic iron nanopowder by hydrogen reduction from α-FeOOH hydroxide under isothermal conditions were studied. α-FeOOH nanopowder was prepared in advance by chemical deposition from aqueous solutions of iron nitrate Fe(NO3)3 (10 wt. %) and alkali NaOH (10 wt. %) at room temperature, pH = 11, under the condition of continuous stirring. The hydrogen reduction process of α-FeOOH nanopowder under isothermal conditions was carried out in a tube furnace in the temperature range from 390 to 470 °C. The study of the crystal structure and composition of the powders was performed by X-ray phase analysis. The specific surface area S of the samples was measured using BET method by low-temperature nitrogen adsorption. The average particle size D of powders was determined via the measured S value. The size characteristics and morphology of the particles were investigated by transmission and scanning electron microscopes. The calculation of the kinetic parameters of the hydrogen reduction process of α-FeOOH under isothermal conditions was carried out by the Gray-Weddington model and Arrhenius equation. It is shown that the rate constant of reduction at 470 °C is approximately 2.2 times higher than in the case at 390 °C. The effective activation energy of synthesizing process of iron nanopowder by hydrogen reduction from α-FeOOH was ~38 kJ/mol, which indicates a mixed reaction mode. In this case, the kinetics overall process is limited by both the kinetics of the chemical reaction and the kinetics of diffusion, respectively, an expedient way to accelerate the process by increasing the temperature or eliminate the diffusion layer of the reduction product by intensive mixing. It is show that Fe nanoparticles obtained by hydrogen reduction of its hydroxide at 410 °C, corresponding to the maximum specific rate of the reduction process, are mainly irregular in shape, evenly distributed, the size of which ranges from several dozens to 100 nm with an average value of 75 nm.


Author(s):  
Hieр Nguyen Tien

The kinetics of metallic cobalt nanopowder synthesizing by hydrogen reduction from Co(OH)2 nanopowder under isothermal conditions were studied. Co(OH)2 nanopowder was prepared in advance by chemical deposition from aqueous solutions of Co(NO3)2 cobalt nitrate (10 wt.%) and NaOH alkali (10 wt.%) at room temperature, pH = 9 under continuous stirring. The hydrogen reduction of Co(OH)2 nanopowder under isothermal conditions was carried out in a tube furnace in the temperature range from 270 to 310 °C. The crystal structure and composition of powders was studied by X-ray phase analysis. The specific surface area of samples was measured using the BET method by low-temperature nitrogen adsorption. The average particle size of powders was determined by the measured specific surface area. Particles size characteristics and morphology were investigated by transmission and scanning electron microscopes. Kinetic parameters of Co(OH)2 hydrogen reduction under isothermal conditions were calculated using the Gray–Weddington model and Arrhenius equation. It was found that the rate constant of reduction at t = 310 °C is approximately 1.93 times higher than at 270 °C, so the process accelerates by 1.58 times for 40 min of reduction. The activation energy of cobalt nanopowder synthesizing from Co(OH)2 by hydrogen reduction is ~40 kJ/mol, which indicates a mixed reaction mode. It was shown that cobalt nanoparticles obtained by the hydrogen reduction of its hydroxide at 280 °C are aggregates of equiaxed particles up to 100 nm in size where individual particles are connected to several neighboring particles by contact isthmuses.


Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1057
Author(s):  
Jesús Hidalgo-Carrillo ◽  
Juan Martín-Gómez ◽  
M. Carmen Herrera-Beurnio ◽  
Rafael C. Estévez ◽  
Francisco J. Urbano ◽  
...  

Olive leaves (by-product from olive oil production in olive mills) were used as biotemplates to synthesize a titania-based artificial olive leaf (AOL). Scanning electron microscopy (SEM) images of AOL showed the successful replication of trichomes and internal structure channels present in olive leaves. The BET surface area of AOL was 52 m2·g−1. X-ray diffraction (XRD) and Raman spectra revealed that the resulting solid was in the predominantly-anatase crystalline form (7.5 nm average particle size). Moreover, the synthesis led to a red-shift in light absorption as compared to reference anatase (gap energies of 2.98 and 3.2 eV, respectively). The presence of surface defects (as evidenced by X-ray photoelectron spectroscopy, XPS, and electron paramagnetic resonance spectroscopy, EPR) and doping elements (e.g., 1% nitrogen, observed by elemental analysis and XPS) could account for that. AOL was preliminarily tested as a catalyst for hydrogen production through glycerol photoreforming and exhibited an activity 64% higher than reference material Evonik P25 under solar irradiation and 144% greater under ultraviolet radiation (UV).


2019 ◽  
Vol 196 ◽  
pp. 00023
Author(s):  
Andrey Barsukov ◽  
Sergey Khmel

Silicon nanowires were synthesized by electron beam plasmaenhanced chemical vapor deposition. The synthesis was carried out using indium and tin catalyst with an average particle size of 100 and 660 nm, respectively, in the temperature range 100-270 °C for indium and 200-335 °C for tin. The minimum (optimum) temperature was found at which an oriented array of microropes was formed. This temperature was 200 °C for indium and 335 °C for tin. In addition, it was found that the formation of individual microropes on the tin catalyst occurred at a temperature lower than the eutectic temperature (232 °C). For indium, this effect was not observed. The silica nanowires synthesized on both catalysts consist of SiOx with x ranging from 1.9 to 2 for all temperatures.


2010 ◽  
Vol 152-153 ◽  
pp. 81-85
Author(s):  
Xiong Wang ◽  
Yin Lin ◽  
Jin Guo Jiang

The homogeneous multiferroic BiFeO3 nanoparticles with average particle size of 85 nm have been successfully synthesized by a simple sol-gel route. The prepared sample was characterized by a variety of techniques, such as X-ray diffractometry, thermogravimetric analysis and differential thermal analysis, differential scanning calorimeter analysis, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The obtained results shows that rapid sintering and subsequently quenching to room temperature are the two vital important factors for the preparation of pure BiFeO3. The magnetic phase transition (TN = 369 °C) and the ferroelectric phase transition (TC = 824.5 °C) were determined, revealing the antiferromagnetic and ferroelectric nature of the as-prepared BiFeO3 nanoparticles. The optical properties of the nanopowders were investigated. The strong band-gap absorption at 486 nm (2.55 eV) of the BiFeO3 nanoparticles may bring some novel applications.


2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
Hui Zhang ◽  
Linlin Zhu ◽  
Runjun Sun

Cotton fibers were treated with titanium sulfate, urea and hexadecyl trimethyl ammonium bromide by low temperature hydrothermal method. The surface morphology, chemical structure, thermal stability and optical properties of cotton fibers before and after treatments were studied by scanning electron microscopy (SEM), transmission electron microscopy(TEM), Fourier transform infrared spectroscopy (FTIR), X–ray photoelectron spectroscopy (XPS), thermal gravimetric (TG) and diffuse reflectance spectrum (DRS). The properties of tensile, friction and self–cleaning capability to discolor strawberry juice stain were also measured. The results showed that titanium dioxide (TiO2) nanoparticles in anatase phase with an average particle size of 50 nm were grafted on the surfaces of cotton fibers. The crystallites of TiO2 were less than 10 nm in size. In comparison with the original cotton fibers, the thermal properties of TiO2 coated cotton fibers had almost no change. The protection against ultraviolet radiation was obtained. However, the tensile properties decreased to some extent. The coefficients of static and kinetic friction increased because of the introduction of TiO2 nanoparticles. The strawberry juice stained on cotton fibers could be discolored exposure to UV radiation.


2020 ◽  
Vol 12 (3) ◽  
pp. 357-365 ◽  
Author(s):  
Xiangrong Ma ◽  
Rui Dang ◽  
Jieying Liu ◽  
Fang Yang ◽  
Huigui Li ◽  
...  

In this paper, we report a novel and facile approach for the synthesis of spinel NiFe2O4 nanoparticles and studies of its photocatalytic activity for oxidation of alcohols. The as-synthesized catalyst was thoroughly characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), elemental mapping, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and N2 adsorption–desorption isotherm (BET) analysis. The TEM image reveals cubic shapes with an average particle size of 10–20 nm. The as-synthesized spinel NiFe2O4 has proved to be an excellent photocatalyst for oxidation of alcohol to the aldehyde with a conversion of 80% and selectivity of 99%. The catalyst has also proved to be noteworthy as it does not loss its catalytic activity even after five cycles of reuse.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mimgjie Ma ◽  
Chao Zhang ◽  
Guangxu Huang ◽  
Baolin Xing ◽  
Yuling Duan ◽  
...  

Polyacrylonitrile (PAN) carbon nanostructure microspheres (CNM) with the average particle size of 200 nm were prepared in the range of 500 to 800°C. The precursors of CNM were obtained through soap-free emulsion polymerization followed by freeze drying, oxidative stabilization, and half-carbonization. KOH was employed as the activation agent of the precursor material, and the ratio between KOH and the precursor was selected as 2 : 1. The element content, pore structure, nitrogen-containing functional groups, and microstructure characterization were characterized via elemental analysis, N2adsorption at low temperature, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), and the electrochemical properties were examined as well. The results revealed that the CNM displayed specific surface area as high as 2134 m2/g and the total pore volume could reach 2.01 cm3/g when the activation temperature was 700°C. Furthermore, its specific capacitance in 3 M KOH and 1 M organic electrolyte could reach 311 F/g and 179 F/g, respectively. And, also, abundant functional groups of N-5 and N-6 were rich in the surface of the material, which could cause Faraday reaction and got the increasing specific capacitance via improvement of the wettability of the electrode material.


Author(s):  
Van Minh Nguyen ◽  
Tien Hiep Nguyen ◽  
Stanislav V. Gorobinsky

In this work, nanopowders (NP) Co(OH)2 were obtained by chemical precipitation from aqueous solutions of cobalt nitrate Co(NO3)2 and alkali NaOH (10 wt. %) using surfactants: sodium dodecyl sulfate (SDS) and cetylpyridinium chloride (CPC) (0.1 wt. %). It was shown that Co(OH)2 NP with 0.1% SDS is the best quality product, since its dispersion increases more than 2 times compared to the samples with 0.1% CPC and without surfactants. In this case, the Co(OH)2 NP has the form of flakes with an irregular shape and a nanometer size (about 100 nm) with an average thickness of 30 nm. It was found that the average particle size of Co NP obtained by hydrogen reduction of Co(OH)2 NP with 0.1% SDS at 280°C has a maximum on the distribution histogram shifted to the interval 41–50 nm, which is characterized by a narrow particle size distribution and represents spherical particles sintered with each other.


2020 ◽  
Author(s):  
Zhongtian Mao ◽  
Pablo Lustemberg ◽  
John R. Rumptz ◽  
M. V. Ganduglia-Pirovano ◽  
Charles T. Campbell

<div>The morphology, interfacial bonding energetics and charge transfer of Ni clusters and nanoparticles on slightly-reduced CeO<sub>2-x</sub> (111) surfaces at 100 to 300 K have been studied using single crystal adsorption calorimetry (SCAC), low-energy ion scattering spectroscopy (LEIS), X-ray photoelectron spectroscopy (XPS), low energy electron diffraction (LEED) and density functional theory (DFT). The initial heat of adsorption of Ni vapor decreased with the extent of pre-reduction (x) of the CeO<sub>2-x</sub> (111), showing that stoichiometric ceria adsorbs Ni more strongly than oxygen vacancies. On CeO<sub>1.95</sub> (111) at 300 K, the heat dropped quickly with coverage in the first 0.1 ML, attributed to nucleation of Ni clusters on stoichiometric steps, followed by the Ni particles spreading onto less favorable terrace sites. At 100 K, the clusters nucleate on terraces due</div><div>to slower diffusion. Adsorbed Ni monomers are in the +2 oxidation state, and they bind by ~45 kJ/mol more strongly to step sites than terraces. The measured heat of adsorption versus average particle size on terraces is favorably compared to DFT calculations. The Ce 3d XPS lineshape</div><div>showed an increase in Ce<sup>3+</sup>/Ce<sup>4+</sup> ratio with Ni coverage, providing the number of electrons donated to the ceria per Ni atom. The charge transferred per Ni is initially large but strongly decreases with increasing cluster size for both experiments and DFT, and shows large differences between clusters at steps versus terraces. This charge is localized on the interfacial Ni and Ce atoms in their atomic layers closest to the interface. This knowledge is crucial to understanding the nature of the active sites on the surface of Ni-CeO<sub>2</sub> catalysts for which metal-oxide interactions play a very important role in the activation of O−H and C−H bonds. The changes in these interactions with Ni particle size (metal loading) and the extent of reduction of the ceria help to explain how previously reported catalytic activity and selectivity change with these same structural details.</div>


Sign in / Sign up

Export Citation Format

Share Document