scholarly journals Combining ability and heterosis in plant improvement

2021 ◽  
pp. 108-117
Author(s):  
Begna Temesgen

Information on combining ability and heterosis of parents and crossings is crucial in breeding efforts. Genetic variety is crucial to the effectiveness of yield improvement efforts because it helps to broaden gene pools in any given crop population. The genotype's ability to pass the intended character to the offspring is referred to as combining ability. As a result, information on combining ability is required to determine the crossing pairs in the production of hybrid varieties. Heterosis is the expression of an F1 hybrid's dominance over its parents in a given feature, as measured not by the trait's absolute value, but by its practical use. To put it another way, heterosis is defined as an increase in the character value of F1 hybrids when compared to the average value of both parents. A plant breeder's ultimate goal is to achieve desirable heterosis (hybrid vigor). In a variety of crop species, heterosis has been widely employed to boost output and extend the adaptability of hybrid types. A crucial requirement for discovering crosses with significant levels of exploitable heterosis is knowledge of the quantity of heterosis in different cross combinations. Any crop improvement program's success is contingent on the presence of a significant level of genetic diversity and heritability. The lack of a broad genetic foundation is the most significant constraint to crop improvement and a major bottleneck in breeding operations. Heterosis is a critical factor in hybrid generation, particularly for traits driven by non-additive gene activity. To get the most out of heterosis for hybrid cultivar production, germplasm must be divided into distinct heterotic groups. Similarly, knowledge on genetic diversity is critical for hybrid breeding and population improvement initiatives because it allows them to analyze genetic diversity, characterize germplasm, and categorize it into different heterotic groupings. In general, general combining ability is used to detect a line's average performance in a hybrid combination, whereas specific combining ability is used to find circumstances where definite combinations perform better or worse than expected based on the mean performance of the lines involved.

2018 ◽  
Author(s):  
Frank Technow

ABSTRACTDeveloping training sets for genomic prediction in hybrid crops requires producing hybrid seed for a large number of entries. In autogamous crop species (e.g., wheat, rice, rapeseed, cotton) this requires elaborate hybridization systems to prevent self-pollination and presents a significant impediment to the implementation of hybrid breeding in general and genomic selection in particular. An alternative to F1 hybrids are bulks of F2 seed from selfed F1 plants (F1:2). Seed production for F1:2 bulks requires no hybridization system because the number of F1 plants needed for producing enough F1:2 seed for multi-environment testing can be generated by hand-pollination. This study evaluated the suitability of F1:2 bulks for use in training sets for genomic prediction of F1 level general combining ability and hybrid performance, under different degrees of divergence between heterotic groups and modes of gene action, using quantitative genetic theory and simulation of a genomic prediction experiment. The simulation, backed by theory, showed that F1:2 training sets are expected to have a lower prediction accuracy relative to F1 training sets, particularly when heterotic groups have strongly diverged. The accuracy penalty, however, was only modest and mostly because of a lower heritability, rather than because of a difference in F1 and F1:2 genetic values. It is concluded that resorting to F1:2 bulks is, in theory at least, a promising approach to remove the significant complication of a hybridization system from the breeding process.


2020 ◽  
Vol 37 (1) ◽  
pp. 101-108
Author(s):  
Degife Asefa Zebire

Molecular markers are efficient for exploiting variations in genotypes as they are not influenced by environmental factors and also speed up breeding programs. They are used to detect large numbers of distinct divergence between genotypes at the DNA level. Genetic diversity study helps to estimate the relationship between inbred lines to make the best hybrid combinations. Lines which are clustered in different heterotic groups are considered as the best hybrid combinations to carry out further breeding activities. Molecular markers are used to meet a number of objectives, including genetic diversity analysis and prediction of hybrid performances in divergent crop species. Agro-morphological and molecular markers have been utilized to study genetic diversity so far. In maize, the uses of molecular markers are important for the evaluation of genetic diversity of inbred lines and in clustering them into heterotic groups. These markers determine genetic similarity of the lines and are used to assess the genetic diversity of maize. Molecular markers have proven valuable for genetic diversity analysis of many crop species and genetically diverse lines are important to improve hybrid breeding. Keyword: Molecular marker; Genetic diversity; Genetic variation, Diversity Array technology; cluster analysis


Rice ◽  
2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Ai-ling Hour ◽  
Wei-hsun Hsieh ◽  
Su-huang Chang ◽  
Yong-pei Wu ◽  
Han-shiuan Chin ◽  
...  

Abstract Background Rice, the most important crop in Asia, has been cultivated in Taiwan for more than 5000 years. The landraces preserved by indigenous peoples and brought by immigrants from China hundreds of years ago exhibit large variation in morphology, implying that they comprise rich genetic resources. Breeding goals according to the preferences of farmers, consumers and government policies also alter gene pools and genetic diversity of improved varieties. To unveil how genetic diversity is affected by natural, farmers’, and breeders’ selections is crucial for germplasm conservation and crop improvement. Results A diversity panel of 148 rice accessions, including 47 cultivars and 59 landraces from Taiwan and 42 accessions from other countries, were genotyped by using 75 molecular markers that revealed an average of 12.7 alleles per locus with mean polymorphism information content of 0.72. These accessions could be grouped into five subpopulations corresponding to wild rice, japonica landraces, indica landraces, indica cultivars, and japonica cultivars. The genetic diversity within subpopulations was: wild rices > landraces > cultivars; and indica rice > japonica rice. Despite having less variation among cultivars, japonica landraces had greater genetic variation than indica landraces because the majority of Taiwanese japonica landraces preserved by indigenous peoples were classified as tropical japonica. Two major clusters of indica landraces were formed by phylogenetic analysis, in accordance with immigration from two origins. Genetic erosion had occurred in later japonica varieties due to a narrow selection of germplasm being incorporated into breeding programs for premium grain quality. Genetic differentiation between early and late cultivars was significant in japonica (FST = 0.3751) but not in indica (FST = 0.0045), indicating effects of different breeding goals on modern germplasm. Indigenous landraces with unique intermediate and admixed genetic backgrounds were untapped, representing valuable resources for rice breeding. Conclusions The genetic diversity of improved rice varieties has been substantially shaped by breeding goals, leading to differentiation between indica and japonica cultivars. Taiwanese landraces with different origins possess various and unique genetic backgrounds. Taiwanese rice germplasm provides diverse genetic variation for association mapping to unveil useful genes and is a precious genetic reservoir for rice improvement.


Agronomy ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 508
Author(s):  
André Schaffasz ◽  
Steffen Windpassinger ◽  
Rod Snowdon ◽  
Benjamin Wittkop

The sensitivity of sorghum to pre-flowering cold stress, resulting in reduced pollen viability and poor seed set, is a major constraint for expanding growing areas into higher altitudes and latitudes. Nevertheless, compared to juvenile cold tolerance, reproductive cold tolerance in sorghum has received much less attention so far, and very little is known about its inheritance in F1-hybrids. We have composed a representative factorial (n = 49 experimental F1-hybrids) for a comprehensive study on heterosis and combining ability for crucial tolerance traits as spikelet fertility (panicle harvest index), seed yield and pollen viability, using field trials in stress- and control environments in Germany and Mexico as well as climate chamber experiments. Our results indicate a heterotic and rather dominant inheritance of reproductive cold tolerance in sorghum, with strong effects of female general combining ability (GCA) on F1-hybrid performance in our material. These findings, together with the comparatively low contribution of specific combining ability (SCA) effects and high heritability estimates, suggest that robust and efficient enhancement of reproductive cold tolerance is feasible via hybrid breeding.


2017 ◽  
Vol 114 (17) ◽  
pp. E3555-E3562 ◽  
Author(s):  
Li Wang ◽  
Li Min Wu ◽  
Ian K. Greaves ◽  
Anyu Zhu ◽  
Elizabeth S. Dennis ◽  
...  

F1 hybrids in Arabidopsis and crop species are uniform and high yielding. The F2 generation loses much of the yield advantage and the plants have heterogeneous phenotypes. We generated pure breeding hybrid mimic lines by recurrent selection and also selected a pure breeding small phenotype line. The hybrid mimics are almost completely homozygous with chromosome segments from each parent. Four particular chromosomal segments from C24 and 8 from Ler were present in all of the hybrid mimic lines, whereas in the F6 small phenotype line, the 12 segments were each derived from the alternative parent. Loci critical for promoting hybrid vigor may be contained in each of these 12 conserved segments. We have identified genes with similar altered expression in hybrid mimics and F1 plants but not in the small phenotype line. These genes may be critical for the generation of hybrid vigor. Analysis of transcriptomes indicated that increased expression of the transcription factor PHYTOCHROME-INTERACTING FACTOR (PIF4) may contribute to hybrid vigor by targeting the auxin biosynthesis gene YUCCA8 and the auxin signaling gene IAA29. A number of auxin responsive genes promoting leaf growth were up-regulated in the F1 hybrids and hybrid mimics, suggesting that increased auxin biosynthesis and signaling contribute to the hybrid phenotype. The hybrid mimic seeds had earlier germination as did the seeds of the F1 hybrids, indicating cosegregation of the genes for rosette size and the germination trait. Early germination may be an indicator of vigorous hybrids.


2005 ◽  
Vol 3 (3) ◽  
pp. 373-384 ◽  
Author(s):  
Tania Carolina Camacho Villa ◽  
Nigel Maxted ◽  
Maria Scholten ◽  
Brian Ford-Lloyd

Awareness of the need for biodiversity conservation is now universally accepted, but most often recent conservation activities have focused on wild species. Crop species and the diversity between and within them has significant socioeconomic as well as heritage value. The bulk of genetic diversity in domesticated species is located in traditional varieties maintained by traditional farming systems. These traditional varieties, commonly referred to as landraces, are severely threatened by genetic extinction primarily due to their replacement by modern genetically uniform varieties. The conservation of landrace diversity has been hindered in part by the lack of an accepted definition to define the entity universally recognized as landraces. Without a definition it would be impossible to prepare an inventory and without an inventory changes in landrace constituency could not be recognized over time. Therefore, based on a literature review, workshop discussion and interviews with key informants, common characteristics of landraces were identified, such as: historical origin, high genetic diversity, local genetic adaptation, recognizable identity, lack of formal genetic improvement, and whether associated with traditional farming systems. However, although these characteristics are commonly present they are not always all present for any individual landrace; several crop-specific exceptions were noted relating to crop propagation method (sexual or asexual), breeding system (self-fertilized or cross-fertilized species), length of formal crop improvement, seed management (selection or random propagation) and use. This paper discusses the characteristics that generally constitute a landrace, reviews the exceptions to these characteristics and provides a working definition of a landrace. The working definition proposed is as follows: ‘a landrace is a dynamic population(s) of a cultivated plant that has historical origin, distinct identity and lacks formal crop improvement, as well as often being genetically diverse, locally adapted and associated with traditional farming systems’.


Author(s):  
D. Chandra ◽  
S.K. Verma ◽  
A.K. Gaur ◽  
C. Bisht ◽  
A. Gautam ◽  
...  

Background: The development of superior hybrids is must to break the existing yield plateau ( less than 800 kg/ha) in pigeonpea and hence, the genetic mechanism governing the heterosis in pigeonpea must be decoded. Methods: The present study was laid down using randomized block design during kharif 2018-19 at GBPUAT, Pantnagar with 36 genotypes (8 parents and 28 F1 hybrids) of pigeonpea. The estimates of combining ability were evaluated by using the Griffing’s, Method II, Model I. The observations recorded for yield and related traits were subjected to the estimation of genetic diversity (GD) using the D2 statistics. The correlation between heterosis and different parameters viz., parental mean (PM), specific combining ability (SCA), mean of general combining ability (MGCA) and genetic diversity (GD) were estimated by using Pearson’s correlation. Result: High estimates of SCA variance and more than unity ( greater than 1) average degree of dominance for all the characters indicated the presence of over dominance. The SCA followed by MGCA were found to be most reliable parameters to predict the heterosis. The parents having high x low or high x high per se performance, good x poor GCA effects and with medium genetic diversity resulted in high frequency of heterotic hybrids.


Author(s):  
Maizura Abu Sin ◽  
Ghizan Saleh ◽  
Nur Ashikin Psyquay Abdullah ◽  
Pedram Kashiani

Genetic diversity and phenotypic superiority are important attributes of parental inbred lines for use in hybrid breeding programs. In this study, genetic diversity among 30 maize (Zea mays L.) inbred lines comprising of 28 introductions from the International Maize and Wheat Improvement Center (CIMMYT), one from Indonesia and a locally developed, were evaluated using 100 simple sequence repeat (SSR) markers, as early screening for potential parents of hybrid varieties. All markers were polymorphic, with a total of 550 unique alleles detected on the 100 loci from the 30 inbred lines. Allelic richness ranged from 2 to 13 per locus, with an average of 5.50 alleles (na). Number of effective alleles (ne) was 3.75 per locus, indicating their high effectiveness in revealing diversity among inbred lines. Average polymorphic information content (PIC) was 0.624, with values ranging from 0.178 to 0.874, indicating high informativeness of the markers. High gene diversity was observed on Chromosomes 8 and 4, with high number of effective alleles, indicating their potential usefulness for QTL analysis. The UPGMA dendrogram constructed identified four heterotic groups within a similarity index of 0.350, indicating that these markers were able to group the inbred lines. The three-dimensional PCoA plot also supports the dendrogram grouping, indicating that these two methods complement each other. Inbred lines in different heterotic groups have originated from different backgrounds and population sources. Information on genetic diversity among the maize inbred lines are useful in developing strategies exploiting heterosis in breeding programs


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0243238
Author(s):  
Wilson Nkhata ◽  
Hussein Shimelis ◽  
Rob Melis ◽  
Rowland Chirwa ◽  
Tenyson Mzengeza ◽  
...  

Knowledge of genetic diversity in plant germplasm and the relationship between genetic factors and phenotypic expression is vital for crop improvement. This study's objectives were to understand the extent of genetic diversity and population structure in 60 common bean genotypes from East and Southern Africa. The common bean genotypes exhibited significant (p<0.05) levels of variability for traits such as days to flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of seeds per pod (NSP), and grain yield per hectare in kilograms (GYD). About 47.82 per cent of the variation among the genotypes was explained by seven principal components (PC) associated with the following agronomic traits: NPP, NFF (nodes to first flower), DTF, GH (growth habit) and GYD. The SNP markers revealed mean gene diversity and polymorphic information content values of 0.38 and 0.25, respectively, which suggested the presence of considerable genetic variation among the assessed genotypes. Analysis of molecular variance showed that 51% of the genetic variation were between the gene pools, while 49% of the variation were within the gene pools. The genotypes were delineated into two distinct groups through the population structure, cluster and phylogenetic analyses. Genetically divergent genotypes such as DRK57, MW3915, NUA59, and VTTT924/4-4 with high yield and agronomic potential were identified, which may be useful for common bean improvement.


Author(s):  
Camilla Beate Hill ◽  
Tefera Tolera Angessa ◽  
Xiao-Qi Zhang ◽  
Kefei Chen ◽  
Gaofeng Zhou ◽  
...  

AbstractThe future of plant cultivar improvement lies in the evaluation of genetic resources from currently available germplasm. Recent efforts in plant breeding have been aimed at developing new and improved varieties from poorly adapted crops to suit local environments. However, the impact of these breeding efforts is poorly understood. Here, we assess the contributions of both historical and recent breeding efforts to local adaptation and crop improvement in a global barley panel by analysing the distribution of genetic variants with respect to geographic region or historical breeding category. By tracing the impact breeding had on the genetic diversity of barley released in Australia, where the history of barley production is relatively young, we identify 69 candidate regions within 922 genes that were under selection pressure. We also show that modern Australian barley varieties exhibit 12% higher genetic diversity than historical cultivars. Finally, field-trialling and phenotyping for agriculturally relevant traits across a diverse range of Australian environments suggests that genomic regions under strong breeding selection and their candidate genes are closely associated with key agronomic traits. In conclusion, our combined dataset and germplasm collection provide a rich source of genetic diversity that can be applied to understanding and improving environmental adaptation and enhanced yields.Author summaryToday’s gene pool of crop genetic diversity has been shaped during domestication and more recently by breeding. Genetic diversity is vital for crop species to be able to adapt to changing environments. There is concern that recent breeding efforts have eroded the genetic diversity of many domesticated crops including barley. The present study assembled a global panel of barley genotypes with a focus on historical and modern Australian varieties.Genome-wide data was used to detect genes that are thought to have been under selection during crop breeding in Australian barley. The results demonstrate that despite being more extensively bred, modern Australian barley varieties exhibit higher genetic diversity than historical cultivars, countering the common perception that intensive breeding leads to genetic erosion of adaptive diversity in modern cultivars. In addition, some loci (particularly those related to phenology) were subject to selection during the introduction of other barley varieties to Australia – these genes might continue to be important targets in breeding efforts in the face of changing climatic conditions.


Sign in / Sign up

Export Citation Format

Share Document