scholarly journals Implementation of scalable and energy efficient WSN platform for IoT applications

2020 ◽  
Vol 13 (36) ◽  
pp. 3725-3737
Author(s):  
Junaid Ahmed Uqaili ◽  

Background/Objectives: The major problems in WSN are the short-range of RF signals and the short life of batteries of each node. We develop a platform that uses the MAC protocols to avoid collisions between packets and decrease the data collection time. To overcome the energy challenges, the sleep modes, idle consumption, and others solutions provided to extend the node’s life period Methods/Statistical analysis: Based on the IoT applications, we configured different hardware (HW) to collect data from temperature,relative humidity (RH), and carbon dioxide (CO2), and access to this data, and these devices remotely through the internet. For this, the nodes, transceivers, batteries, and the gateway (GW) are analyzed. Additionally, it is configured with the frequency band or the radio frequency (RF) sensitivity to improve the performance of the system developed. Findings: Sensors, repeaters, and the GW were configured to work with each other and be accessed through the internet. The energy consumed on the experiment carried out has been reduced by more than 80% choosing LP modes and enable sleep algorithms over the Node’s OS where the time was also reduced around 80% in comparison with the available options. By set MQTT and SSH services, this application is scalable to be integrated with cloud services and be accessed by remote computers. Novelty/Applications: Finally, the lifelong period of nodes augmented drastically, more range between nodes is achieved and highly reliable data collected with low power consumption. Keywords: WSN; sensors; IoT; CO 2; temperature; relative humidity (RH)

Author(s):  
Linh Manh Pham

Many domains of human life are more and moreimpacted by applications of the Internet of Things (i.e., IoT).The embedded devices produce masses of data day after dayrequiring a strong network infrastructure. The inclusion ofmessaging protocols like MQTT is important to ensure as fewerrors as possible in sending millions of IoT messages. Thisprotocol is a great component of the IoT universe due to itslightweight design and low power consumption. DistributedMQTT systems are typically needed in actual applicationenvironments because centralized MQTT methods cannotaccommodate a massive volume of data. Although beingscalable decentralized MQTT systems, they are not suited totraffic workload variability. IoT service providers may incurexpense because the computing resources are overestimated.This points to the need for a new approach to adapt workloadfluctuation. Through proposing a modular MQTT framework,this article provides such an elasticity approach. In order toguarantee elasticity of MQTT server cluster while maintainingintact IoT implementation, the MQTT framework used offthe-shelf components. The elasticity feature of our frameworkis verified by various experiments.


These days, the Internet of Things applications are growing progressively. However, the existing frameworks for IoT applications are notsatisfied the security, allocation, and provisioning requirements.We propose a novel secure IoT application framework. Fog cloud execution model is serverless computing which is run by the server in cloud provider and the allocation of machine resources is dynamically managed. The application which consumes the actual amount of resources, the pricing is based upon that rather on pre-purchase units of capacity. The proposed framework consists of different methods, such as secure mobility, resource allocation, provisioning, and prediction under blockchain technologies.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 22
Author(s):  
Eljona Zanaj ◽  
Giuseppe Caso ◽  
Luca De Nardis ◽  
Alireza Mohammadpour ◽  
Özgü Alay ◽  
...  

In the last years, the Internet of Things (IoT) has emerged as a key application context in the design and evolution of technologies in the transition toward a 5G ecosystem. More and more IoT technologies have entered the market and represent important enablers in the deployment of networks of interconnected devices. As network and spatial device densities grow, energy efficiency and consumption are becoming an important aspect in analyzing the performance and suitability of different technologies. In this framework, this survey presents an extensive review of IoT technologies, including both Low-Power Short-Area Networks (LPSANs) and Low-Power Wide-Area Networks (LPWANs), from the perspective of energy efficiency and power consumption. Existing consumption models and energy efficiency mechanisms are categorized, analyzed and discussed, in order to highlight the main trends proposed in literature and standards toward achieving energy-efficient IoT networks. Current limitations and open challenges are also discussed, aiming at highlighting new possible research directions.


2021 ◽  
Vol 47 ◽  
pp. 101477
Author(s):  
Xianhao Shen ◽  
Haitao Yu ◽  
Xiaoyong Liu ◽  
Qiu Bin ◽  
Ashish Kr. Luhach ◽  
...  

2014 ◽  
Vol 626 ◽  
pp. 127-135 ◽  
Author(s):  
D. Jessintha ◽  
M. Kannan ◽  
P.L. Srinivasan

Discrete Cosine Transform (DCT) is commonly used in image compression. In the history of DCT, a milestone was the Distributed Arithmetic (DA) technique. Due to the technology dependency a multiplier-less computation was built with DA based technique. It occupied less area but the throughput is less. Later, due to the technology scaling, multiplier based architectures can be easily adapted for low-power and high-performance architecture. Fixed width multipliers [1]-[7] reduces hardware and time complexity. In this work, Radix 4 fixed width multiplier is adapted with DCT architecture due to low power consumption and saves 30% power. In order to reduce truncation errors caused during fixed width multiplication, an estimation circuit is designed based on conditional probability theory.


This paper presents the design of 2*1 and 4*1 RFID reader microstrip array antenna at 2.4GHz for the Internet of things (IoT) networks which are Zigbee, Bluetooth and WIFI. The proposed antenna is composed of identical circular shapes radiating patches printed in FR4 substrate. The dielectric constant εr and substrate thickness h are 4.4 and 1.6mm, respectively. The 2*1 and 4*1 array antennas present a gain improvement of 27.3% and 61.9%, respectively. The single,2*1 and 4*1 array antennas were performed with CADFEKO.


Connectivity ◽  
2020 ◽  
Vol 148 (6) ◽  
Author(s):  
S. A. Zhezhkun ◽  
◽  
L. B. Veksler ◽  
S. M. Brezitsʹkyy ◽  
B. O. Tarasyuk

This article focuses on the analysis of promising technologies for long-range traffic transmission for the implementation of the Internet of Things. The result of the review of technical features of technologies, their advantages and disadvantages is given. A comparative analysis was performed. An analysis is made that in the future heterogeneous structures based on the integration of many used radio technologies will play a crucial role in the implementation of fifth generation networks and systems. The Internet of Things (IoT) is heavily affecting our daily lives in many domains, ranging from tiny wearable devices to large industrial systems. Consequently, a wide variety of IoT applications have been developed and deployed using different IoT frameworks. An IoT framework is a set of guiding rules, protocols, and standards which simplify the implementation of IoT applications. The success of these applications mainly depends on the ecosystem characteristics of the IoT framework, with the emphasis on the security mechanisms employed in it, where issues related to security and privacy are pivotal. In this paper, we survey the security of the main IoT frameworks, a total of 8 frameworks are considered. For each framework, we clarify the proposed architecture, the essentials of developing third-party smart apps, the compatible hardware, and the security features. Comparing security architectures shows that the same standards used for securing communications, whereas different methodologies followed for providing other security properties.


Sign in / Sign up

Export Citation Format

Share Document