scholarly journals Performance and evaluation of location energy aware trusted distance source routing protocol for secure routing in WSNs

2020 ◽  
Vol 13 (39) ◽  
pp. 4092-4108
Author(s):  
M Rajasekaran

Objectives: To propose a suitable algorithm for improving the network lifetime of Wireless Sensor Networks (WSNs). Methods/Findings: We proposed a suitable Location and Energy Aware Trusted Distance Source Routing (LEATDSR) algorithm. Here, the energy consumption, location and the data quality are equalized by the Quality of Service (QoS) based routing algorithms. In addition to this algorithm, an existing clustering algorithm is also incorporates for grouping the sensor nodes based on the trust, location, energy and distance. In this LEATDSR is capable of deciding the evaluation metrics which express the QoS. Moreover, a new trust mechanism is also introduced in this model that incorporates multi-attributes of various sensor nodes in terms of communication, data, energy, and recommendation. This new trust mechanism relies on an enhanced sliding window time by considering the occurrences of attack frequency for facilitating the discovery of anomalous behaviours of attackers. The enhanced energy utilization is established within the sensor nodes for performing the active data transmission. The performance of the proposed model is evaluated by conducting various experiments in a simulation environment which creates by using NS2. From the experiments conducted in this work, the average packet transfer rate is increased drastically when compared to existing models available in the literature.

2020 ◽  
Vol 39 (6) ◽  
pp. 8139-8147
Author(s):  
Ranganathan Arun ◽  
Rangaswamy Balamurugan

In Wireless Sensor Networks (WSN) the energy of Sensor nodes is not certainly sufficient. In order to optimize the endurance of WSN, it is essential to minimize the utilization of energy. Head of group or Cluster Head (CH) is an eminent method to develop the endurance of WSN that aggregates the WSN with higher energy. CH for intra-cluster and inter-cluster communication becomes dependent. For complete, in WSN, the Energy level of CH extends its life of cluster. While evolving cluster algorithms, the complicated job is to identify the energy utilization amount of heterogeneous WSNs. Based on Chaotic Firefly Algorithm CH (CFACH) selection, the formulated work is named “Novel Distributed Entropy Energy-Efficient Clustering Algorithm”, in short, DEEEC for HWSNs. The formulated DEEEC Algorithm, which is a CH, has two main stages. In the first stage, the identification of temporary CHs along with its entropy value is found using the correlative measure of residual and original energy. Along with this, in the clustering algorithm, the rotating epoch and its entropy value must be predicted automatically by its sensor nodes. In the second stage, if any member in the cluster having larger residual energy, shall modify the temporary CHs in the direction of the deciding set. The target of the nodes with large energy has the probability to be CHs which is determined by the above two stages meant for CH selection. The MATLAB is required to simulate the DEEEC Algorithm. The simulated results of the formulated DEEEC Algorithm produce good results with respect to the energy and increased lifetime when it is correlated with the current traditional clustering protocols being used in the Heterogeneous WSNs.


Wireless Sensor Networks (WSN) consists of a large amount of nodes connected in a self-directed manner. The most important problems in WSN are Energy, Routing, Security, etc., price of the sensor nodes and renovation of these networks is reasonable. The sensor node tools included a radio transceiver with an antenna and an energy source, usually a battery. WSN compute the environmental conditions such as temperature, sound, pollution levels, etc., WSN built the network with the help of nodes. A sensor community consists of many detection stations known as sensor nodes, every of which is small, light-weight and portable. Nodes are linked separately. Each node is linked into the sensors. In recent years WSN has grow to be an essential function in real world. The data’s are sent from end to end multiple nodes and gateways, the data’s are connected to other networks such as wireless Ethernet. MGEAR is the existing mechanism. It works with the routing and energy consumption. The principal problem of this work is choosing cluster head, and the selection is based on base station, so the manner is consumes energy. In this paper, develop the novel based hybrid protocol Low Energy Aware Gateway (LEAG). We used Zigbee techniques to reduce energy consumption and routing. Gateway is used to minimize the energy consumption and data is send to the base station. Nodes are used to transmit the data into the cluster head, it transmit the data into gateway and gateway compress and aggregate the data then sent to the base station. Simulation result shows our proposed mechanism consumes less energy, increased throughput, packet delivery ration and secure routing when compared to existing mechanism (MGEAR).


The fundamental issue is framing the sensor nodes and steering the information from sender node to receiver node in wireless sensor networks (WSN). To resolve this major difficulty, clustering algorithm is one of the accessible methods employed in wireless sensor networks. Still, clustering concept also faces some hurdles while transmitting the data from source to destination node. The sensor node is used to sense the data and the source node helps to convey the information and the intended recipient receives the sensed information. The clustering proposal will choose the cluster head depending on the residual energy and the sensor utility to its cluster members. The cluster heads will have equal cluster number of nodes. The complexity is generated in computing the shortest path and this can be optimized by Dijkstra’s algorithm. The optimization is executed by Dijkstra’s shortest path algorithm that eliminates the delay in packet delivery, energy consumption, lifetime of the packet and hop count while handling the difficulties. The shortest path calculation will improve the quality of service (QoS). QoS is the crucial problem due to loss of energy and resource computation as well as the privacy in wireless sensor networks. The security can be improvised in this projected work. The preventive metrics are discussed to upgrade the QoS facility by civilizing the privacy parameter called as Safe and Efficient Query Processing (SAFEQ) and integrating the extended watchdog algorithm in wireless sensor networks.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
An He ◽  
Guangwei Wu ◽  
Jinhuan Zhang

A large number of Internet of Things (IoT) devices such as sensor nodes are deployed in various urban infrastructures to monitor surrounding information. However, it is still a challenging issue to collect data in a low-cost, high-quality, and reliable manner through IoT technique. Although the recruitment of mobile vehicles (MVs) to collect urban data has proved to be an effective method, most existing data collection systems lack a trust detection mechanism for malicious terminal nodes and malicious vehicles, which should lead to security vulnerabilities in practice. This paper proposes a novel data collection strategy based on a layered trust mechanism (DC-LTM). The strategy recruits MVs as data collectors of the sensor nodes based on the data value in the city, evaluates the trustworthiness of the data reported by the nodes, and records the results to the cloud data center. Furthermore, in order to make the data collection system more efficient and trust mechanism more reliable, we introduce unmanned aerial vehicles (UAVs) dispatched by data centers to actively verify the core sensor node data and use the core sensor data as baseline data to evaluate the credibility of the vehicles and the trust value of the whole network sensor nodes. Different from the previous strategies, UAVs adopts the DC-LTM method to obtain the node data while actively obtaining the trust value of MVs and nodes, which effectively improves the quality of data acquisition. Simulation results show that the mechanism effectively distinguishes malicious vehicles that provide false data in exchange for payment and reduces the total cost of system recruitment payments. At the same time, the proposed incentive mechanism encourages vehicle to complete the evaluation task and improves the accuracy of node trust evaluation. The recognition rates of false data attacks and flooding attacks as well as the recognition error rate of normal nodes are 100%, 98.9%, and 3.9%, respectively, which improves the quality of system data collection as a whole.


Author(s):  
Sivaganesan D

Utilization of smart applications in various domains is facilitated pervasively by sensor nodes (SN) that are connected in a wireless manner and a number of smart things. Hazards due to internal and external attacks exist along with the advantages of the smart things and its applications. Security measures are influenced by three main factors namely scalability, latency and network lifespan, without which mitigation of internal attacks is a challenge. The deployment of SN based Internet of things (IoT) is decentralized in nature. However, centralized solutions and security measures are provided by most researchers. A data driven trust mechanism based on blockchain is presented in this paper as a decentralized and energy efficient solution for detection of internal attacks in IoT powered SNs. In grey and black hole attack settings, the message overhead is improved using the proposed model when compared to the existing solutions. In both grey and black hole attacks, the time taken for detection of malicious nodes is also reduced considerably. The network lifetime is improved significantly due to the enhancement of these factors.


Wireless sensor nodes are dead very early because of less battery power availability. If any single node dead in the network then the workload shifted on the other nodes. By this scenario battery consumption increase of other nodes from the regular routine, and the whole sensor network down very soon. Every single node in a sensor network interconnected with each other without the help of the radio waves technology. Each sensor nodes associated with a battery that provides sufficient power to complete the whole tasks, like to sense data, receive data, transmit data etc. Tasks are huge but the battery lifetime is limited, this is a major problem in the sensor network. This paper represented a newly develop Algorithm to better utilization of nodes battery power and make the sensor network more stable by increasing the lifetime of the sensor nodes. EANIA results proved that this approach is more energy aware and more secure.


2019 ◽  
Vol 4 (3) ◽  
pp. 45-51
Author(s):  
Raj Kumar Pyage ◽  
H. G. Chandrakanth

In wireless sensor networks, sensor nodes play the most important role. These sensor nodes are mainly un-chargeable, so it an issue regarding lifetime of the network.  The main objective of this research is concerning clustering algorithms to minimize the energy utilization of each sensor node, and maximize the sensor network lifetime of WSNs. In this paper, we propose a novel clustering algorithm for wireless sensor networks (WSN) that decrease the networks energy consumption and significantly prolongs its lifetime. Here main role play distribution of CHs ( Cluster Heads) across the network. Our simulation result shows considerable decrease in network energy utilization and therefore increase the network lifetime.  


Author(s):  
Omar Adil Mahdi ◽  
Yusor Rafid Bahar Al-Mayouf ◽  
Ahmed Basil Ghazi ◽  
Mazin Abed Mohammed ◽  
Ainuddin Wahid Abdul Wahab ◽  
...  

<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In view of this goal, a link cost function is introduced to assess the quality of the links by considering the new multi-criteria node weight metric, in which energy and load balancing are considered. The node weight is considered in constructing and updating the routing tree to achieve dynamic behavior for event-driven WSNs. The proposed EBR-DA was evaluated and validated by simulation, and the results were compared with those of InFRA and DRINA by using performance metrics for dense static networks.</p>


Author(s):  
Selvakumar Kamalanathan ◽  
Sai Ramesh Lakshmanan ◽  
Kannan Arputharaj

In many applications such as disaster management, temperature control, weather forecasting, industrial control system and forest fire detection, it is very difficult for a human to monitor and control each and every event in real time. Even with advancement in technology, this issue has remained a challenging task. The existing Wireless Network may not be suitable for data communication with human network. Hence, to monitor and control the physical parameters of the environment, a special device with needed functionalities is required. The network which is formed with these devices is known as sensor network. This is used to monitor, control and send the collected information to the end user. These networks are formed with a large number of sensor nodes with limitation such as self-energized, low computation power, infra-structure less, multi-hop communication and without central administrator control. Due to the ad hoc nature, the nodes are deployed unevenly over a geographical region, it is necessary to provide some mechanism to manage and control the topology of the sensor nodes to prolong their life time. Clustering algorithms are useful for data mining, compression, probability density estimation and many other important tasks like IDS. Clustering algorithm utilize a distance metric in order to partition network traffic patterns so that patterns within a single group have same network characteristics than in a different group. The proposed system builds a Fuzzy logic clustering model that can perform three different types of clusters in order to achieve the secure and energy aware routing of packets.


Sign in / Sign up

Export Citation Format

Share Document