Effects of Noni (Morinda citrifolia L.) Fruit Powder on Physicochemical Properties of Pork Patty during Cold Storage

2021 ◽  
Vol 31 (5) ◽  
pp. 291-298
Author(s):  
Hana Song ◽  
Si-Hyung Lee ◽  
Young-Joon Choi ◽  
Dong-Wook Sim ◽  
Kyung-Soo Lee ◽  
...  
Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 831 ◽  
Author(s):  
Han Chen ◽  
Haotian Zheng ◽  
Margaret Anne Brennan ◽  
Wenpin Chen ◽  
Xinbo Guo ◽  
...  

The impacts of black tea infusion on physicochemical properties, antioxidant capacity and microstructure of stirred acidified dairy gel (ADG) system have not been fully explored. These impacts were studied during a 28-day cold storage (4 °C) period to explore the feasibility and technical boundaries of making acidified dairy gels in which black tea infusion (BTI) is incorporated. Reconstituted skim milks containing different proportions of BTI were acidified by GDL (glucono-δ-lactone) at 35 °C for making ADG systems. Both textural properties and structural features were characterized; antioxidant capacity was determined through three assays. They are (1) free radical scavenging ability by DPPH (2,2-diphenyl-1-picrylhydrazyl) assay; (2) ABTS [2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)] assay and (3) ferric reducing antioxidant power (FRAP) assay. The microstructure of the ADGs was observed using SEM (scanning electron microscopy) and CLSM (confocal laser scanning microscopy). Results showed that BTI significantly increased the antioxidant capacity of the gel systems and the gel containing 15% BTI was as stable as the control gel in terms of syneresis rate. However lower phase stability (higher syneresis rate) was observed in the ADG with a higher portion of BTI (30% to 60%). The microstructure of the ADGs observed may explain to the phase stability and textural attributes. The results suggested that tea polyphenols (TPs) improved antioxidant capacity in all samples and the interactions between BTI and dairy components significantly altered the texture of ADGs. Such alterations were more pronounced in the samples with higher proportion of BTI (60%) and/or longer storage time (28 days).


Author(s):  
Siriporn Sornsomboonsuk ◽  
◽  
Tiraporn Junyusen ◽  
Natthaporn Chatchavanthatri ◽  
Pornpimol Moolkaew ◽  
...  

2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


Author(s):  
Vanishree Bambrana ◽  
Dayanand Cd ◽  
Sheela Sr

ABSTRACTObjective: Flavonoids from the crude seeds extract of Pongamia pinnata L., dried fruit powder of Morinda citrifolia L., bark of Mangifera indica L., andrhizome of Zingiber officinale Rosc. were screened for xanthine oxidase (XO) inhibition at different concentration. The inhibitory potential of quercetinand allopurinol were used for the determination of 50% inhibitory concentration (IC50) and Ki values.Methods: Isolation of flavonoids from the plant extracts was processed by column chromatography and tested for XO inhibitory activity in the rangeof 6-800 μg/ml.Results: The results demonstrated that optimized flavonoids extract of P. pinnata L. exhibited promising XO inhibition. P. pinnata L., M. indica L., andZ. officinale Rosc. had IC50 in the concentration of 8.74 mM, 1.09 mM, 5.4 mM and Ki 0.35 mM, 1.73 mM, 2.7 mM, respectively.Conclusion: The study showed that plant species under investigation exhibited XO inhibition by optimized flavonoid extract. P. pinnata L. indicatedpromising XO inhibition compared to other plant extracts. Flavonoids can be used as a potent inhibitor of XO an alternative to allopurinol.Keywords: Xanthine oxidase, Quercetin, Allopurinol, Pongamia pinnata, Oxidative stress.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11507
Author(s):  
Qingfen Wang ◽  
Fei Yang ◽  
Dandan Jia ◽  
Tian Wu

The increasing popularity of Morinda citrifolia has many medical and health benefits because of its rich polysaccharides (PSC) and polyphenols (PPN). It has become popular to brew the dry M. citrifolia fruit slice as tea in some regions of China. In this study, optimize the extraction parameters of M. citrifolia fruit tea polysaccharides and polyphenols using response surface methodology. The results indicated the highest PSC yield of 17% at 46 °C for 11 min and the ratio of water/M. citrifolia fruit powder was 78 mL/g. The optimum extraction of PPN was at 95 °C for 10 min and the ratio of water/M. citrifolia fruit powder 90 mL/g, with 8.93% yield. Using dry M. citrifolia fruit slices as a tea is reported for the first time. Based on the results, the maximum level of PSC can be obtained under condition by infusing about four dried M. citrifolia fruit slice with average thickness and size in warm boiled water for 11 min, taking a 300 mL cup (300 mL of water) for example. The maximum level of PPN can be obtained by adding three slices of dried M. citrifolia fruit slice to boiled water for 10 min. Considering the powder used in our study, the further pulverization of cutting into powder is more conducive to material precipitation. This study provides a scientific basis for obtaining PSC and PPN from dry M. citrifolia fruit slice tea by brewing.


Author(s):  
N. Azzouzi ◽  
S. Zantar ◽  
N. Aghmir ◽  
M.R. Britel ◽  
A. Maurady

Background: Blackberry is a seasonal harvested fruit that is also very fragile and perish- es quickly. A comparative study was conducted to find out influence of cold storage on physicochemical parameters of wild and cultivated blackberry over a period of 12 days. Methods: The plant materials were composed of the blackberry fruit, including a compound of cultivated blackberry (Rubus spp.), and wild blackberry (Rubus fruticosus L. agg) which were harvested in the North of Morocco. The temperature of the storage of wild and cultivated blackberry was 5 °C for 4, 8, and 12 days, and then transferred to 25 °C for 1 day to simulate transport and commercialization. After that, the physicochemical parameters were analyzed. Statistical analyses were performed using SAS. Results: During 12 days of storage, the pH of samples was decreased from 3.69 to 3.22 for wild blackberry, and from 4.85 to 3.43 for cultivated blackberry. The titratable acidity was increased from 1.61 to 3.28 for wild blackberry, and from 2.07 to 3.25 for cultivated blackberry. Flavonoids also showed a remarkable increase in values from 30 to 70.66 mg QE/100g of wild blackberries and from 25.33 to 60.66 mg QE/100g in cultivated ones between harvest and the last day of storage. The variation in skin color revealed a decrease during storage of L* brightness, a* redness, and yellowness b* for both blackberries. Conclusion: The most suitable storage time of blackberry components during cold storage at 5 °C was 12 days. The temperature at 5 °C preserves the quality of the blackberry for both wild and cultivated ones. However, the wild blackberry was more resistant than cultivated one to cold storage.


Sign in / Sign up

Export Citation Format

Share Document