Distillation of total reduced inorganic sulfur from marine sediment samples v1

Author(s):  
Patrick D Larkin ◽  
Sebastian Rubiano-Rincon

This procedure can be used to precipitate H2S as Ag2S from the Total Reduced Inorganic Sulfur (TRIS) fraction of marine sediments.

2020 ◽  
Vol 17 (2) ◽  
Author(s):  
Eko Saputro ◽  
Lili Fauzielly ◽  
Imelda Rosalina Silalahi ◽  
Winatris Winatris

Sebanyak 20 sampel sedimen dari perairan Teluk Cenderawasih telah digunakan sebagai bahan studi foraminifera, yang bertujuan untuk mengetahui bagaimana sebaran spasial dan struktur komunitas foraminifera di perairan Teluk Cenderawasih. Hasil penelitian menunjukkan komposisi foraminifera planktonik yang terdiri dari 7 Genus dan 13 Spesies sedangkan foraminifera bentonik terdiri dari 57 Genus dan 87 Spesies. Foraminifera planktonik yang paling umum ditemukan karena muncul di seluruh sampel adalah genus Globigerinoides, terutama G. trilobus dan G. ruber. Sedangkan foraminifera bentonik didominasi oleh subordo Rotaliina, dan yang paling banyak ditemukan adalah genus Cibicidiodes dan Lenticulina. Keanekaragaman foraminifera planktonik dan bentonik termasuk dalam kategori tinggi dengan kisaran antara 0.82 – 0.90 (planktonik) dan 0.79 – 0.95 (bentonik). Kemerataan foraminifera planktonik dan bentonik juga termasuk dalam kategori tinggi dengan kisaran antara 0.83 – 0.99 (planktonik) dan 0.82–0.99 (bentonik). Sedangkan untuk dominasi foraminifera planktonik dan bentonik berada dalam kategori rendah dengan kisaran 0.10 – 0.18 (planktonik) dan 0.05 – 0.21 (bentonik). Hal ini menunjukkan bahwa Teluk Cendrawasih meskipun merupakan perairan yang semi tertutup, namun kondisinya masih sangat bagus bagi perkembangan foraminiferaKata Kunci : foraminifera, distribusi spasial, struktur komunitas, dan Teluk Cenderawasih A total of 20 marine sediment samples from Cenderawasih Bay waters have been used for foraminiferal study, . The purpose to describe the spatial distribution and structure of the foraminifera community in the waters of Cenderawasih Bay. The results indicate that marine sediments are composed of 7 genera and 13 species of planktonic foraminifera, and 57 genera and 87 species belong to benthic foraminifera. The most common planktonic foraminifera is Globigerinoides which is found in all location, particularly G. trilobus and G. ruber. Furthermore, benthonic foraminifera is dominated by subordo Rotaliina, particularly genera Cibicidoides and Lenticulina as the most common genera. Diversity of both Planktonic and benthonic foraminifera are categorized as high, the values are between 0.82 and 0.90, and between 0.79 and 0.95 respectively. Planktonic and benthonic foraminiferal evenness are also high with range value between 0.83 and 0.99 (planktonic), and between 0.82 and 0.99 (benthonic). In contrast, dominance of both foraminiferal type are low, between 0.10 and 0.18 for planktonic, and between 0.05 and 0.21 (benthonic).This indicates that despite a semi–enclosed bay, Cendrawasih Bay is still considered as a good environment for foraminiferal community. Keywords: foraminifera, spatial distribution, community structure, and Cenderawasih Bay.


2000 ◽  
Vol 10 (01n02) ◽  
pp. 47-56 ◽  
Author(s):  
KUNIKO MAEDA ◽  
TOMOTAKE HASEGAWA ◽  
HIROMI HAMANAKA ◽  
KENICHI HASEGAWA ◽  
MASARU MAEDA

Chemical shifts of Kα1,2 line of sulfur in marine sediments were measured with in-air high-resolution PIXE in order to examine the possibility of direct speciation of sulfur in such environmental substances. Change of chemical states of sulfur along the depth in the sediments was observed. Oxidation of the sediment samples by air was also examined. Problems to be improved for exact speciation are discussed.


2020 ◽  
Author(s):  
Juho Junttila ◽  
Steffen Aagaard Sørensen ◽  
Thomas Haugland Johansen ◽  
Geir Wing Gabrielsen

<p>Information about the distribution microplastics is crucial in marine environmental research. At present, plastic pollution is an environmental threat to the oceans and more than 90 % of microplastic particles are assumed to be deposited in the sediments on the ocean floor. An efficient way of identifying microplastic particles in marine sediments would result in improved understanding of microplastic distribution, inception, accumulation areas, and impact on marine ecosystems. Today, manual classification of microplastic particles using a microscope is time consuming. The goal of this study is to identify microplastic particles in marine sediment samples with the help of image recognition and machine learning. The possibility of using artificial microplastic particles will also be tested as a means of constructing comprehensive training sets. Existing algorithms already have been successful in classification of microfossils, which could be further developed for recognition of microplastic particles. Furthermore, hyperspectral analysis will be tested to determine the origin of the microplastic particles. Our overall goal is to train classifiers that in the future successfully can recognize different plastic objects in marine sediment samples and thereby replace the time-consuming manual classification task. Comparison between human based and machine based identifications for a large number of data sets will be made to test these classifiers.</p>


1994 ◽  
Vol 6 (3) ◽  
pp. 375-378 ◽  
Author(s):  
Martin Melles ◽  
Sergey R. Verkulich ◽  
Wolf-D. Hermichen

Radiocarbon dating was carried out on the total organic carbon of 19 lacustrine and marine sediment samples from the Bunger Hills. The results indicate that radiocarbon contamination is negligible throughout two sediment sequences from a fresh water lake. In contrast, two sequences from marine basins are irregularly influenced by the Antarctic Marine Reservoir Effect, which today amounts to more than 1000 years, depending on the degree of dilution with meltwater. All dated sediments were deposited during Holocene time.


Química Nova ◽  
2009 ◽  
Vol 32 (4) ◽  
pp. 855-860 ◽  
Author(s):  
Eloy Yordad Companioni Damas ◽  
Miriam Odette Cora Medina ◽  
Ana Catalina Núñez Clemente ◽  
Miguel Ángel Díaz Díaz ◽  
Luis González Bravo ◽  
...  

2020 ◽  
Author(s):  
Claus Pelikan ◽  
Kenneth Wasmund ◽  
Clemens Glombitza ◽  
Bela Hausmann ◽  
Craig W. Herbold ◽  
...  

AbstractMicroorganisms in marine sediments play major roles in marine biogeochemical cycles by mineralizing substantial quantities of organic matter from decaying cells. Proteins and lipids are abundant components of necromass, yet the taxonomic identities of microorganisms that actively degrade them remain poorly resolved. Here, we revealed identities, trophic interactions, and genomic features of bacteria that degraded 13C-labeled proteins and lipids in cold anoxic microcosms containing sulfidic subarctic marine sediment. Supplemented proteins and lipids were rapidly fermented to various volatile fatty acids within 5 days. DNA-stable isotope probing (SIP) suggested Psychrilyobacter atlanticus was an important primary degrader of proteins, and Psychromonas members were important primary degraders of both proteins and lipids. Closely related Psychromonas populations, as represented by distinct 16S rRNA gene variants, differentially utilized either proteins or lipids. DNA-SIP also showed 13C-labeling of various Deltaproteobacteria within 10 days, indicating trophic transfer of carbon to putative sulfate-reducers. Metagenome-assembled genomes revealed the primary hydrolyzers encoded secreted peptidases or lipases, and enzymes for catabolism of protein or lipid degradation products. Psychromonas species are prevalent in diverse marine sediments, suggesting they are important players in organic carbon processing in situ. Together, this study provides new insights into the identities, functions, and genomes of bacteria that actively degrade abundant necromass macromolecules in the seafloor.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chuckcris P. Tenebro ◽  
Dana Joanne Von L. Trono ◽  
Carmela Vannette B. Vicera ◽  
Edna M. Sabido ◽  
Jovito A. Ysulat ◽  
...  

AbstractThe marine ecosystem has become the hotspot for finding antibiotic-producing actinomycetes across the globe. Although marine-derived actinomycetes display strain-level genomic and chemodiversity, it is unclear whether functional traits, i.e., antibiotic activity, vary in near-identical Streptomyces species. Here, we report culture-dependent isolation, antibiotic activity, phylogeny, biodiversity, abundance, and distribution of Streptomyces isolated from marine sediments across the west-central Philippines. Out of 2212 marine sediment-derived actinomycete strains isolated from 11 geographical sites, 92 strains exhibited antibacterial activities against multidrug-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. The 16S rRNA and rpoB gene sequence analyses confirmed that antibiotic-producing strains belong to the genus Streptomyces, highlighting Streptomyces parvulus as the most dominant species and three possible new species. Antibiotic-producing Streptomyces strains were highly diverse in Southern Antique, and species diversity increase with marine sediment depth. Multiple strains with near-identical 16S rRNA and rpoB gene sequences displayed varying strength of antibiotic activities. The genotyping of PKS and NRPS genes revealed that closely related antibiotic-producing strains have similar BGC domains supported by their close phylogenetic proximity. These findings collectively suggest Streptomyces' intraspecies adaptive characteristics in distinct ecological niches that resulted in outcompeting other bacteria through differential antibiotic production.


2021 ◽  
Vol 13 (11) ◽  
pp. 5441-5453
Author(s):  
Kelly-Anne Lawler ◽  
Giuseppe Cortese ◽  
Matthieu Civel-Mazens ◽  
Helen Bostock ◽  
Xavier Crosta ◽  
...  

Abstract. Radiolarians (holoplanktonic protozoa) preserved in marine sediments are commonly used as palaeoclimate proxies for reconstructing past Southern Ocean environments. Generating reconstructions of past climate based on microfossil abundances, such as radiolarians, requires a spatially and environmentally comprehensive reference dataset of modern census counts. The Southern Ocean Radiolarian (SO-RAD) dataset includes census counts for 238 radiolarian taxa from 228 surface sediment samples located in the Atlantic, Indian, and southwest Pacific sectors of the Southern Ocean. This compilation is the largest radiolarian census dataset derived from surface sediment samples in the Southern Ocean. The SO-RAD dataset may be used as a reference dataset for palaeoceanographic reconstructions, or for studying modern radiolarian biogeography and species diversity. As well as describing the data collection and collation, we include recommendations and guidelines for cleaning and subsetting the data for users unfamiliar with the procedures typically used by the radiolarian community. The SO-RAD dataset is available to download from https://doi.org/10.1594/PANGAEA.929903 (Lawler et al., 2021).


2021 ◽  
Author(s):  
Ellie Pryor ◽  
Ian Hall ◽  
Morten Andersen ◽  
Daniel Babin ◽  
Yue (Merry) Cai ◽  
...  

<div> <p>Sediment provenance is of key importance for understanding transport history and characterising sediment source regions in the marine and terrestrial environment. Radiogenic isotopes are widely used to identify inland and coastal sediment origins. They document changes in detrital terrigenous sediment fluxes which can be related to continental hydrological variability. Understanding sediment sources to the ocean is a pre-requisite before interpreting past climate archives in marine sediment cores.</p> </div><div> <p><span>South African coastal drainage basins are composed of various geological units, each reflected by different radiogenic isotope signals in the sediment. In addition to the age and nature of their source rocks, the sediment type influences this radiogenic signature.</span></p> </div><div> <p><span>Here, we present a review of the present-day radiogenic isotopic fingerprints of South African river catchments signals from new river sediment samples with the aim to gain a broad spatial coverage of the source rocks in the region and their relative contributions of terrigenous sediment delivered to the ocean. This information will be applied to marine sediment core MD20-3591 (36° 43.707 S; 22° 9.151 E, water depth 2464m), located offshore South Africa which has the potential to record both Agulhas Current and terrestrial variability. The core site receives a significant amount of terrigenous material from the African continents via riverine input. During the last glacial period, these rivers flowed across the continental shelf within a subdued incised valley. The Gourritz River catchment drains the Cape Supergroup and Karoo Supergroup, typical of these southern drainage basins, whereas the eastern Cape rivers drain the Karoo Supergroup geological unit which is capped by the Drakensberg basalts.</span></p> </div><div> <p><span>We are using the knowledge gained from these new South African terrestrial river sediment samples to identify the sources and transport pathways of the terrigenous sediments in MD20-3591. Of particular interest is the sensitivity of the radiogenic isotopic signatures to grain size variabilities and how this relationship can help to define local or distal sediments. These records will allow us to explore variability in regional hydroclimate in relation to the abundant archaeological evidence of cultural and technological innovations of Middle Stone Age humans in southern Africa.</span></p> </div>


Molecules ◽  
2019 ◽  
Vol 24 (21) ◽  
pp. 3927 ◽  
Author(s):  
Dora Melucci ◽  
Alessandro Zappi ◽  
Francesca Poggioli ◽  
Pietro Morozzi ◽  
Federico Giglio ◽  
...  

Biogenic silica is the major component of the external skeleton of marine micro-organisms, such as diatoms, which, after the organisms death, settle down onto the seabed. These micro-organisms are involved in the CO2 cycle because they remove it from the atmosphere through photosynthesis. The biogenic silica content in marine sediments, therefore, is an indicator of primary productivity in present and past epochs, which is useful to study the CO2 trends. Quantification of biosilica in sediments is traditionally carried out by wet chemistry followed by spectrophotometry, a time-consuming analytical method that, besides being destructive, is affected by a strong risk of analytical biases owing to the dissolution of other silicatic components in the mineral matrix. In the present work, the biosilica content was directly evaluated in sediment samples, without chemically altering them, by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Quantification was performed by combining the multivariate standard addition method (MSAM) with the net analyte signal (NAS) procedure to solve the strong matrix effect of sediment samples. Twenty-one sediment samples from a sediment core and one reference standard sample were analyzed, and the results (extrapolated concentrations) were found to be comparable to those obtained by the traditional wet method, thus demonstrating the feasibility of the ATR-FTIR-MSAM-NAS approach as an alternative method for the quantification of biosilica. Future developments will cover in depth investigation on biosilica from other biogenic sources, the extension of the method to sediments of other provenance, and the use higher resolution IR spectrometers.


Sign in / Sign up

Export Citation Format

Share Document