scholarly journals Modified guidance law based on a sliding mode controller for a missile guidance system

2016 ◽  
Vol 23 (3) ◽  
Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2017 ◽  
Vol 65 (2) ◽  
pp. 233-245
Author(s):  
Y. Wang ◽  
M. Sun ◽  
S. Du ◽  
Z. Chen

Abstract Target manoeuvre is one of the key factors affecting guidance accuracy. To intercept highly maneuverable targets, a second-order sliding-mode guidance law, which is based on the super-twisting algorithm, is designed without depending on any information about the target motion. In the designed guidance system, the target estimator plays an essential role. Besides the existing higher-order sliding-mode observer (HOSMO), a first-order linear observer (FOLO) is also proposed to estimate the target manoeuvre, and this is the major contribution of this paper. The closed-loop guidance system can be guaranteed to be uniformly ultimately bounded (UUB) in the presence of the FOLO. The comparative simulations are carried out to investigate the overall performance resulting from these two categories of observers. The results show that the guidance law with the proposed linear observer can achieve better comprehensive criteria for the amplitude of normalised acceleration and elevator deflection requirements. The reasons for the different levels of performance of these two observer-based methods are thoroughly investigated.


2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Yao Yang ◽  
Yang Xu ◽  
Pei Wang

To explore the influence of the trace point step-jump behavior on a terminal guidance system, an analysis is performed from the line-of-sight rate (LOS rate) and guidance accuracy views for designing an anti-step-jump guidance law. First, the linear terminal guidance model under the trace point jump circumstance is constructed, and then the fundamental reason for the miss distance is investigated by deriving the upper bound of the LOS rate at the initial step-jump moment. Following this, the novel proposed analytical differential adjoint model is established with the adjoint method, and its validity is demonstrated comparing with the numeric derivative model. Based on the adjoint model, the effects of the ratio coefficient, the time constant, and the jump amplitude on the guidance accuracy are explored. Finally, a novel anti-step-jump guidance law is designed to shorten the recovery time of the overload. The simulations have shown that the faster recovery time and higher accuracy are achieved in comparison with the proportional navigation guidance, optimal guidance, and adaptive sliding mode guidance.


Author(s):  
T. Binazadeh ◽  
M. J. Yazdanpanah

In this paper, a new approach to design the 3-dimensional missile guidance law, based on partial stabilization, is presented. The approach is based on the classification of the state variables within the guidance system dynamics with respect to their required stabilization properties. The resulting guidance law enables the missile to intercept highly maneuvering targets within a finite interception time. Effectiveness of the proposed guidance law is demonstrated through analysis and simulations.


Author(s):  
Kezi Meng ◽  
Di Zhou

A new guidance law considering missile autopilot dynamics is established via integrating a smooth super-twisting algorithm with nonlinear integral sliding mode. In this guidance law, a finite-time disturbance observer is introduced to estimate mismatched and matched disturbances resulting from target maneuvers. Based on Lyapunov stability theory, the finite-time stability of the closed-loop guidance system under this law is analyzed using a finite-time bounded function. The super-twisting algorithm guarantees that the proposed guidance law is chattering-free and the disturbance observer does not depend on the prior knowledge of target acceleration. So the proposed guidance law is easy to be implemented in practice. The finite-time convergence and robustness of the proposed guidance law are demonstrated via numerical simulations accounting for missile autopilot dynamics.


2007 ◽  
Vol 111 (1124) ◽  
pp. 621-636 ◽  
Author(s):  
H. Nobahari ◽  
S. H. Pourtakdoust

Abstract The well-known ant colony optimisation (ACO) meta-heuristic is applied to optimise the parameters of a new fuzzy command to line-of-sight (CLOS) guidance law. The new guidance scheme includes two phases, a midcourse and a terminal phase. In the first phase, a lead strategy is utilised which reduces the acceleration demands. A proportional derivative (PD) fuzzy sliding mode controller is used as the main tracking controller of the first phase. Moreover, a supervisory controller is coupled with the main tracking controller to guarantee the missile flight within the beam. In the terminal phase, a pure CLOS guidance law without lead angle is utilised. For this phase, a new hybrid fuzzy proportional-integral-derivative (PID) fuzzy sliding mode controller is proposed as a high precision tracking controller. The parameters of the proposed controllers for the first and the second phases are optimised using ACO. In this regard, the recently developed continuous ant colony system (CACS) algorithm is extended to multi-objective optimisation problems and utilised to optimise the parameters of the pre-constructed fuzzy controllers. The performance of the resulting guidance law is evaluated at different engagement scenarios and compared with the well-known feedback linearisation method. The comparison is also made in the presence of measurement noise.


Author(s):  
Haitong Xu ◽  
M. A. Hinostroza ◽  
C. Guedes Soares

Abstract This paper presents a time-varying vector field guidance law for path-following control of underactuated autonomous vehicles. The proposed guidance law employs a time-varying equation to calculate the desired heading angle. A sliding mode controller is designed to track the desired heading angle, and it is proved to be globally exponentially stable (GES). With this controller, the stability proof for guidance system is presented and the equilibrium point of the guidance system is Uniform Global Asymptotic Stable (UGAS). In order to avoid the obstacle when ship approaching the predefined path, a combined Path-following and repelling field based obstacle avoidance system is proposed in this paper. Simulations are carried out to validate the performance of the combined path-following and collision avoidance system.


Sign in / Sign up

Export Citation Format

Share Document