scholarly journals MathConnex mathematical package for calculating the equivalent thermal conductivity of a strip coil

2021 ◽  
pp. 45-50
Author(s):  
O. B. Kryuchkov ◽  
A. V. Krokhalev ◽  
P. I. Malenko ◽  
L. G. Saranin

When heating complex metal loads (layered, fibrous, granular), the gas gaps in them increase the temperature difference across the charge section and lead to an increase in the duration of its heating. Optimizing the time of complex loads heating, which helps to reduce fuel consumption and improve the heated metal quality, requires knowledge of temperature fields in them, which, in turn, depend on the equivalent thermal conductivity of the complex load. For their calculations mathematical modeling can be used, which requires a highly qualified researcher. Carrying out of laboratory and experimental researches takes a lot of time and demands big material expenses, thus the received results are applicable only to a concrete charge. A number of authors give formulas for calculating the equivalent thermal conductivity of the strip coil. However, the practical use of such formulas is difficult due to the presence of difficult to determine parameters: the degree of the strip layers contact, thermal conductivity of different layers of strip and gas gaps between them, heat transfer coefficients by radiation in the gaps between layers. In this case, different formulas for calculating the equivalent thermal conductivity give signifi cantly different results. In the present work, for 20 steel strip coils with height, inner and outer diameters, respectively, 1; 0.4–0.966 m; with a strip thickness of 0.001; 0.003; 0.006 m, the number of layers per side 17; 25 and 50, for the coefficients of strip coil filling 0.70; 0.75; 0.80; 0.85; 0.90; 0.95; 0.97; 0.99, 0.999, the degrees of the strip layers contact 2.8–3.0% and different heated media (air, nitrogen, hydrogen), the reduced thermal conductivity coefficients were calculated according to various formulas using the MathConnex mathematical package (part of MathCadPro). On the basis of the conducted researches the formula for calculation of equivalent thermal conductivity of strip coils is chosen. The results of the calculation are in good agreement with the literature data, it can be used to calculate temperature fields and thermophysical parameters in layered metal loads, as well as to calculate their heating time and furnace performance.

2018 ◽  
Vol 2018 (1) ◽  
pp. 41-43
Author(s):  
Takashi Fukue ◽  
Hirotoshi Terao ◽  
Koichi Hirose ◽  
Tomoko Wauke ◽  
Hisashi Hoshino ◽  
...  

2013 ◽  
Vol 34 (1) ◽  
pp. 5-16 ◽  
Author(s):  
Jozef Cernecky ◽  
Jan Koniar ◽  
Zuzana Brodnianska

Abstract The paper deals with a study of the effect of regulating elements on local values of heat transfer coefficients along shaped heat exchange surfaces with forced air convection. The use of combined methods of heat transfer intensification, i.e. a combination of regulating elements with appropriately shaped heat exchange areas seems to be highly effective. The study focused on the analysis of local values of heat transfer coefficients in indicated cuts, in distances expressed as a ratio x/s for 0; 0.33; 0.66 and 1. As can be seen from our findings, in given conditions the regulating elements can increase the values of local heat transfer coefficients along shaped heat exchange surfaces. An optical method of holographic interferometry was used for the experimental research into temperature fields in the vicinity of heat exchange surfaces. The obtained values correspond very well with those of local heat transfer coefficients αx, recorded in a CFD simulation.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4158
Author(s):  
Haiyan Yu ◽  
Haochun Zhang ◽  
Heming Wang ◽  
Dong Zhang

Currently, there are few studies on the influence of microscale thermal radiation on the equivalent thermal conductivity of microscale porous metal. Therefore, this paper calculated the equivalent thermal conductivity of high-porosity periodic cubic silver frame structures with cell size from 100 nm to 100 µm by using the microscale radiation method. Then, the media radiation characteristics, absorptivity, reflectivity and transmissivity were discussed to explain the phenomenon of the radiative thermal conductivity changes. Furthermore, combined with spectral radiation properties at the different cross-sections and wavelength, the radiative transmission mechanism inside high-porosity periodic cubic frame silver structures was obtained. The results showed that the smaller the cell size, the greater radiative contribution in total equivalent thermal conductivity. Periodic cubic silver frames fluctuate more in the visible band and have better thermal radiation modulation properties in the near infrared band, which is formed by the Surface Plasmon Polariton and Magnetic Polaritons resonance jointly. This work provides design guidance for the application of this kind of periodic microporous metal in the field of thermal utilization and management.


2020 ◽  
Vol 9 (1) ◽  
pp. 233-243 ◽  
Author(s):  
Nainaru Tarakaramu ◽  
P.V. Satya Narayana ◽  
Bhumarapu Venkateswarlu

AbstractThe present investigation deals with the steady three-dimensional flow and heat transfer of nanofluids due to stretching sheet in the presence of magnetic field and heat source. Three types of water based nanoparticles namely, copper (Cu), aluminium oxide (Al2O3), and titanium dioxide (TiO2) are considered in this study. The temperature dependent variable thermal conductivity and thermal radiation has been introduced in the energy equation. Using suitable similarity transformations the dimensional non-linear expressions are converted into dimensionless system and are then solved numerically by Runge-Kutta-Fehlberg scheme along with well-known shooting technique. The impact of various flow parameters on axial and transverse velocities, temperature, surface frictional coefficients and rate of heat transfer coefficients are visualized both in qualitative and quantitative manners in the vicinity of stretching sheet. The results reviled that the temperature and velocity of the fluid rise with increasing values of variable thermal conductivity parameter. Also, the temperature and normal velocity of the fluid in case of Cu-water nanoparticles is more than that of Al2O3- water nanofluid. On the other hand, the axial velocity of the fluid in case of Al2O3- water nanofluid is more than that of TiO2nanoparticles. In addition, the current outcomes are matched with the previously published consequences and initiate to be a good contract as a limiting sense.


1987 ◽  
Vol 109 (3) ◽  
pp. 599-605 ◽  
Author(s):  
An-Shik Yang ◽  
Ching-Chang Chieng

An anisotropic factor is carefully selected from eleven distributions and adopted to the k–ε two-equation model of turbulence to obtain detailed velocity and temperature fields for steady-state, fully developed turbulent flow through infinite triangular/square rod array. The present study covers the ranges of pitch-to-diameter ratio from 1.123 to 1.5, and Reynolds number from 2.4 × 104 to 106. Velocity and wall shear stress are calculated and compared to experimental data. Normalized fluid temperature, friction factor, and heat transfer coefficient are also computed. The correlations of friction factor and heat transfer coefficients for flow inside circular pipe and flow through finite rod arrays are compared with the results for flow through infinite rod arrays.


1987 ◽  
Vol 109 (4) ◽  
pp. 912-918 ◽  
Author(s):  
J. R. Parsons ◽  
M. L. Arey

Experiments have been performed which describe the transient development of natural convective flow from both a single and two vertically aligned horizontal cylindrical heat sources. The temperature of the wire heat sources was monitored with a resistance bridge arrangement while the development of the flow field was observed optically with a Mach–Zehnder interferometer. Results for the single wire show that after an initial regime where the wire temperature follows pure conductive response to a motionless fluid, two types of fluid motion will begin. The first is characterized as a local buoyancy, wherein the heated fluid adjacent to the wire begins to rise. The second is the onset of global convective motion, this being governed by the thermal stability of the fluid layer immediately above the cylinder. The interaction of these two motions is dependent on the heating rate and relative heat capacities of the cylinder and fluid, and governs whether the temperature response will exceed the steady value during the transient (overshoot). The two heat source experiments show that the merging of the two developing temperature fields is hydrodynamically stabilizing and thermally insulating. For small spacing-to-diameter ratios, the development of convective motion is delayed and the heat transfer coefficients degraded by the proximity of another heat source. For larger spacings, the transient behavior approaches that of a single isolated cylinder.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Kan Ankang ◽  
Han Houde

Based on the fractal theory, the geometric structure inside an open cell polyurethane foam, which is widely used as adiabatic material, is illustrated. A simplified cell fractal model is created. In the model, the method of calculating the equivalent thermal conductivity of the porous foam is described and the fractal dimension is calculated. The mathematical formulas for the fractal equivalent thermal conductivity combined with gas and solid phase, for heat radiation equivalent thermal conductivity and for the total thermal conductivity, are deduced. However, the total effective heat flux is the summation of the heat conduction by the solid phase and the gas in pores, the radiation, and the convection between gas and solid phase. Fractal mathematical equation of effective thermal conductivity is derived with fractal dimension and vacancy porosity in the cell body. The calculated results have good agreement with the experimental data, and the difference is less than 5%. The main influencing factors are summarized. The research work is useful for the enhancement of adiabatic performance of foam materials and development of new materials.


Sign in / Sign up

Export Citation Format

Share Document