Dual-Zone Gas Sensors on Al2O3 Substrates with Thin-Film Sensors from Iron Oxide

2018 ◽  
Vol 20 (11) ◽  
pp. 676-688 ◽  
Author(s):  
S.V. Denisyuk ◽  
◽  
N.I. Mukhurov ◽  
O.N. Kudanovich ◽  
◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Sai Kiran Ayyala ◽  
James A. Covington

Enhancing the performance of a chemo-resistive gas sensor is often challenging due to environmental humidity influencing its sensitivity and baseline resistance. One of the most promising ways of overcoming this challenge is through ultraviolet (UV) illumination of the sensing material. Most research has focused on using UV with in-house developed sensors, which has limited their widespread use. In this work, we have evaluated if UV can enhance the performance of commercially available MOX-based gas sensors. The performance of five different MOX sensors has been evaluated, specifically SGX Microtech MiCS6814 (thin-film triple sensor), FIGARO TGS2620 (n-type thick film), and Alphasense VOC sensor (p-type thick film). These sensors were tested towards isobutylene gas under UV light at different wavelengths (UV-278 nm and UV-365 nm) to investigate its effect on humidity, sensitivity, baseline drift, and recovery time of each sensor. We found the response time of thin-film sensors for reducing gases was improved by 70 s under UV- 365 nm at normal operating temperatures. In addition, all the sensors were left in a dirty environment and the humid-gas testing was repeated. However, due to their robust design, the sensitivity and baseline drift of all the sensors remained the same. This indicates that UV has only limited uses with commercial gas sensors.


2020 ◽  
Vol 20 (11) ◽  
pp. 7169-7174
Author(s):  
Seong Bin Jo ◽  
Hyun Ji Kim ◽  
Joong Hee Ahn ◽  
Byung Wook Hwang ◽  
Jeung Soo Huh ◽  
...  

SnO2 thin-film gas sensors were easily created using the ion sputtering technique. The as-deposited SnO2 thin films consist of a tetragonal SnO2 phase and densely packed nanosized grains with diameters of approximately 20−80 nm, which are separated by microcracks. The as-deposited SnO2 thin film is well crystallized, with a dense columnar nanostructure grown directly onto the alumina material and the Pt electrodes. The grain size and thickness of SnO2 thin films are easily controlled by varying the sputtering time of the ion coater. The responses of the SnO2 thin-film sensors decrease as the SnO2 film thickness is increased, indicating that a negative association exists between the sensor response and the SnO2 film thickness due to gas diffusion from the surface. The SnO2 thin-film sensor, which was created by ion sputtering for 10 min, shows an excellent sensor response (Ra/Rg where Ra is the electric resistance under air and Rg is the electric resistance under the test gas) for detecting 1 ppm H2S at 350°C.


2020 ◽  
Vol 87 (12) ◽  
pp. 768-776
Author(s):  
Marcel Plogmeyer ◽  
Germán González ◽  
Volker Schulze ◽  
Günter Bräuer

AbstractThe development of thin-film sensors for temperature and wear measurement in machining operations is presented in this work. A functional thin-film system, consisting of an Al2O3 insulation layer, a chromium sensor layer structured by photolithography and an Al2O3 wear-protection and insulation layer, is deposited by physical vapor deposition (PVD) processes onto the surface of cemented carbide cutting inserts. First specimen of the sensors are successfully fabricated and tested in laboratory experiments as well as in machining operations to demonstrate their functionality. These tool-integrated sensors can be used as an in-process monitoring device to determine the temperatures on the rake face at or close to the tool-chip contact area and to measure the progress of the flank-wear land width. The knowledge of these important process parameters opens up the possibility to develop new in-process control mechanisms in order to modify and improve the surface integrity of manufactured components. Thereby, their performance and lifetime can be enhanced.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
R. Alexandrescu ◽  
I. Morjan ◽  
A. Tomescu ◽  
C. E. Simion ◽  
M. Scarisoreanu ◽  
...  

Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis ofFe(CO)5and methyl methacrylate (MMA) mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized) polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence ofNO2, CO, andCO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towardsNO2detection andNO2selectivity relatively to CO andCO2. An optimum working temperature of200°Cwas found.


2000 ◽  
Vol 657 ◽  
Author(s):  
Youngman Kim ◽  
Sung-Ho Choo

ABSTRACTThe mechanical properties of thin film materials are known to be different from those of bulk materials, which are generally overlooked in practice. The difference in mechanical properties can be misleading in the estimation of residual stress states in micro-gas sensors with multi-layer structures during manufacturing and in service.In this study the residual stress of each film layer in a micro-gas sensor was measured according to the five difference sets of film stacking structure used for the sensor. The Pt thin film layer was found to have the highest tensile residual stress, which may affect the reliability of the micro-gas sensor. For the Pt layer the changes in residual stress were measured as a function of processing variables and thermal cycling.


2000 ◽  
Vol 375 (1-2) ◽  
pp. 142-146 ◽  
Author(s):  
Dae-Sik Lee ◽  
Ki-Hong Nam ◽  
Duk-Dong Lee

Sign in / Sign up

Export Citation Format

Share Document