scholarly journals Climate Change: Implications for the Assumptions, Goals and Methods of Urban Environmental Planning

2016 ◽  
Vol 1 (4) ◽  
pp. 103-113 ◽  
Author(s):  
Kristina Hill

As a result of increasing awareness of the implications of global climate change, shifts are becoming necessary and apparent in the assumptions, concepts, goals and methods of urban environmental planning. This review will present the argument that these changes represent a genuine paradigm shift in urban environmental planning. Reflection and action to develop this paradigm shift is critical now and in the next decades, because environmental planning for cities will only become more urgent as we enter a new climate period. The concepts, methods and assumptions that urban environmental planners have relied on in previous decades to protect people, ecosystems and physical structures are inadequate if they do not explicitly account for a rapidly changing regional climate context, specifically from a hydrological and ecological perspective. The over-arching concept of spatial suitability that guided planning in most of the 20th century has already given way to concepts that address sustainability, recognizing the importance of temporality. Quite rapidly, the concept of sustainability has been replaced in many planning contexts by the priority of establishing resilience in the face of extreme disturbance events. Now even this concept of resilience is being incorporated into a novel concept of urban planning as a process of adaptation to permanent, incremental environmental changes. This adaptation concept recognizes the necessity for continued resilience to extreme events, while acknowledging that permanent changes are also occurring as a result of trends that have a clear direction over time, such as rising sea levels. Similarly, the methods of urban environmental planning have relied on statistical data about hydrological and ecological systems that will not adequately describe these systems under a new climate regime. These methods are beginning to be replaced by methods that make use of early warning systems for regime shifts, and process-based quantitative models of regional system behavior that may soon be used to determine acceptable land uses. Finally, the philosophical assumptions that underlie urban environmental planning are changing to address new epistemological, ontological and ethical assumptions that support new methods and goals. The inability to use the past as a guide to the future, new prioritizations of values for adaptation, and renewed efforts to focus on intergenerational justice are provided as examples. In order to represent a genuine paradigm shift, this review argues that changes must begin to be evident across the underlying assumptions, conceptual frameworks, and methods of urban environmental planning, and be attributable to the same root cause. The examples presented here represent the early stages of a change in the overall paradigm of the discipline.

2020 ◽  
Author(s):  
Gerald Lim ◽  
Aurel Moise ◽  
Raizan Rahmat ◽  
Bertrand Timbal

<p>Southeast Asia (SEA) is a rapidly developing and densely populated region that is home to over 600 million people. This, together with the region’s high sensitivity, exposure and low adaptive capacities, makes it particularly vulnerable to climate change and extremes such as floods, droughts and tropical cyclones. While the last decade saw some countries in SEA develop their own climate change projections, studies were largely uncoordinated and most countries still lack the capability to independently produce robust future climate information. Following a proposal from the World Meteorological Organisation (WMO) Regional Association (RA) V working group on climate services, the ASEAN Regional Climate Data, Analysis and Projections (ARCDAP) workshop series was conceived in 2017 to bridge these gaps in regional synergies. The ARCDAP series has been organised annually since 2018 by the ASEAN Specialised Meteorological Centre (hosted by Meteorological Service Singapore) with support from WMO through the Canada-funded Climate Risk and Early Warning Systems (Canada-CREWS) initiative.</p><p>This presentation will cover the activities and outcomes from the first two workshops, as well as the third which will be held in February 2020. The ARCDAP series has so far brought together representatives from ASEAN National Meteorological and Hydrological Services (NMHSs), climate scientists and end-users from policy-making and a variety of vulnerability and impact assessment (VIA) sectors, to discuss and identify best practices regarding the delivery of climate change information, data usage and management, advancing the science etc. Notable outputs include two comprehensive workshop reports and a significant regional contribution to the HadEX3 global land in-situ-based dataset of temperature and precipitation extremes, motivated by work done with the ClimPACT2 software.</p><p>The upcoming third workshop will endeavour to encourage the uptake of the latest ensemble of climate simulations from the Coupled Model Intercomparison Project (CMIP6) using CMIP-endorsed tools such as ESMValTool. This will address the need for ASEAN climate change practitioners to upgrade their knowledge of the latest global climate model database. It is anticipated that with continued support from WMO, the series will continue with the Fourth workshop targeting the assessment of downscaling experiments in 2021.</p>


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


2017 ◽  
pp. 42-52
Author(s):  
Debasis Poddar

Hindu Kush Himalayan region (hereafter the HKH) - with 3500 odd kilometres stretched in eight countries- is default resource generation hub for about one-fifth population of the world. The ecosystem-growing delicate these days- seems to play a critical role for the survival of flora and fauna along with the maintenance of all its life-sustaining mountain glaciers. Ten major rivers to carry forward hitherto sustainable development of these peoples fall into question now. Further, in the wake of global climate change today, the delicate HKH ecosystem becomes increasingly fragile to unfold manifold consequences and thereby take its toll on the population. And the same might turn apocalyptic in its magnanimity of irreversibledamage. Like time-bomb, thus, climate ticks to get blown off. As it is getting already too delayed for timely resort to safeguards, if still not taken care of in time, lawmakers ought to find the aftermath too late to lament for. Besides being conscious for climate discipline across the world, collective efforts on the part of all regional states together are imperative to minimize the damage. Therefore, each one has put hands together to be saved from the doomsday that appears to stand ahead to accelerate a catastrophicend, in the given speed of global climate change. As the largest Himalayan state and its central positioning at the top of the HKH, Nepal has had potential to play a criticalrole to engage regional climate change regime and thereby spearhead climate diplomacy worldwide to play regional capital of the HKH ecosystem. As regional superpower, India has had potential to usurp leadership avatar to this end. With reasoningof his own, the author pleads for better jurisprudence to attain regional environmental integrity inter se- rather than regional environmental integration alone- to defendthe vulnerable HKH ecosystem since the same constitutes common concern of humankind and much more so for themselves. Hence, to quote from Shakespeare, “To be or not to be, that is the question” is reasonable here. While states are engaged in the spree to cause mutually agreed destruction, global climate change- with deadly aftermath- poses the last and final unifier for them to turn United Nations in rhetoric sense o f the term.


Author(s):  
Yanyu Zhang ◽  
Shuying Zang ◽  
Xiangjin Shen ◽  
Gaohua Fan

Precipitation during the main rain season is important for natural ecosystems and human activities. In this study, according to daily precipitation data from 515 weather stations in China, we analyzed the spatiotemporal variation of rain-season (May–September) precipitation in China from 1960 to 2018. The results showed that rain-season precipitation decreased over China from 1960 to 2018. Rain-season heavy (25 ≤ p < 50 mm/day) and very heavy (p ≥ 50 mm/day) precipitation showed increasing trends, while rain-season moderate (10 ≤ p < 25 mm/day) and light (0.1 ≤ p < 10 mm/day) precipitation showed decreasing trends from 1960 to 2018. The temporal changes of precipitation indicated that rain-season light and moderate precipitation displayed downward trends in China from 1980 to 2010 and rain-season heavy and very heavy precipitation showed fluctuant variation from 1960 to 2018. Changes of rain-season precipitation showed clear regional differences. Northwest China and the Tibetan Plateau showed the largest positive trends of precipitation amount and days. In contrast, negative trends were found for almost all precipitation grades in North China Plain, Northeast China, and North Central China. Changes toward drier conditions in these regions probably had a severe impact on agricultural production. In East China, Southeast China and Southwest China, heavy and very heavy precipitation had increased while light and moderate precipitation had decreased. This result implied an increasing risk of flood and mudslides in these regions. The advance in understanding of precipitation change in China will contribute to exactly predict the regional climate change under the background of global climate change.


Author(s):  
David G. Anderson ◽  
Kirk A. Maasch

As the twenty-first century winds onward, it is becoming increasingly clear that understanding how climate affects human cultural systems is critically important. Indeed, it has been argued by many researchers that how we respond to changing global climate is one of the greatest scientific and political challenges facing our planetary technological civilization, comparable and closely intertwined with concerns about biological or nuclear warfare, famine, disease, overpopulation, or environmental degradation. By any reasonable evaluation of the evidence, this century, and likely the several centuries that follow it, will be characterized by dramatic climate change, perhaps as significant in terms of its impact on our species as any climatic episodes that have occurred in the past. What we don’t know with much certainty is how these environmental changes will play out across the planet, and how individuals as well as nation states will respond to them. Archaeology has a major role to play in helping us move through this period of crisis, however, by showing us how human cultures in the past responded to dramatic changes in climate. As the work of many archaeological scholars has shown, climate change has not invariably proven to be a bad thing: it is how people respond to it that is critical (e.g. Anderson et al. 2007b; Cooper and Sheets 2012; Crumley 2000, 2006, 2007; Hardesty 2007; McAnany and Yoffee 2010; McIntosh et al. 2000; Redman 2004a; Sandweiss and Quilter 2008; Sassaman and Anderson 1996; Tainter 2000). Archaeology working in tandem with a host of palaeoenvironmental and historical disciplines has lessons for our modern world and, as this volume demonstrates, we as a profession are making great strides in getting our message out. Perhaps the most important lesson from the past is that people, through their actions, are the drivers of cultural change, including response to climate change. Societies are not, however, monolithic entities that ‘chose’ to succeed or fail; people as individuals, groups, or factions through their actions generate outcomes, and often some demonstrate remarkable flexibility and resilience (Cooper and Sheets 2012; Diamond 2005; McAnany and Yoffee 2010).


2013 ◽  
Vol 6 (5) ◽  
pp. 1429-1445 ◽  
Author(s):  
M. Trail ◽  
A. P. Tsimpidi ◽  
P. Liu ◽  
K. Tsigaridis ◽  
Y. Hu ◽  
...  

Abstract. Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF) model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM) to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.


2016 ◽  
Vol 11 (1) ◽  
pp. 181-200 ◽  
Author(s):  
Hans R. Schultz

AbstractGrapevines are cultivated on six out of seven continents, between latitudes 4° and 51° in the Northern Hemisphere and between latitudes 6° and 45° in the Southern Hemisphere across a large diversity of climates (oceanic, warm oceanic, transition temperate, continental, cold continental, Mediterranean, subtropical, attenuated tropical, and arid climates). Accordingly, the range and magnitude of environmental factors differ considerably from region to region and so do the principal environmental constraints for grape production. The type, number, and magnitude of environmental constraints are currently undergoing changes due to shifts in climate patterns already observed for the past and predicted for the future. These changes are already affecting grape composition with observed changes in sugar and acidity concentrations. As with other components such as polyphenols or aroma compounds, their relationships to environmental changes are more difficult to quantify. In general, one can divide the expected climatic changes during the grape-ripening period into two scenarios: warmer and dryer and warmer and moister, with different responses for red and white grape varieties. The production challenges within this broad separation are vastly different, and the strategies to ensure a sustainable product need to be adapted accordingly. The economic impact of these changes is difficult to assess. An in-depth analysis is necessary to construct relevant scenarios and risk analysis for individual regions and to quantify the costs and/or benefits of regional climate developments. (JEL Classifications: Q1, Q54)


2009 ◽  
Vol 106 (21) ◽  
pp. 8441-8446 ◽  
Author(s):  
D. W. Pierce ◽  
T. P. Barnett ◽  
B. D. Santer ◽  
P. J. Gleckler

2001 ◽  
Vol 41 (1) ◽  
pp. 689
Author(s):  
C.D. Mitchell ◽  
G.I. Pearman

The prospect of global-scale changes in climate resulting from changes in atmospheric greenhouse gas concentrations has produced a complex set of public and private- sector responses. This paper reviews several elements of this issue that are likely to be most important to industry.Scientific research continues to provide evidence to suggest that global climate will change significantly over the coming decades due to increases in the atmospheric concentration of greenhouse gases. Nonetheless, there exists a debate over the difference between observations of temperature retrieved from satellite and temperature measurements taken from the surface. Recent research undertaken to inform the debate is discussed, with the conclusion that there are real differences in trend between the surface and the lower atmosphere that can be explained in physical terms. Attention is turning to developing an understanding as to why climate model results show apparently consistent trends between the surface and the lower atmosphere, in contrast to these observations.While such uncertainties in the underlying science have been used to question whether action on the greenhouse issues is necessary, the initial response, as evidenced by international negotiations, has been to start mitigating greenhouse gas emissions. Adaptation to future climate change has received less attention than mitigation. A number of reasons for this are discussed, including the fact that regional scenarios of climate change are uncertain.The principles of risk management may be one way to manage the uncertainties associated with projections of regional climate change. Although the application of risk management to the potential impacts of climate change requires further investigation, elements of such a framework are identified, and include:Identifying the critical climate-related thresholds that are important to industry and its operations (for example, a 1-in-100 year return tropical cyclone).Using this understanding to analyse, and where possible quantify, industry’s pre-existing or baseline adaptive state through the use of sensitivity surfaces and quantified thresholds (for example, were facilities designed for a 1-in-100 event or a 1-in-500 year event?)Establishing probabilistic statements or scenarios of climate that are relevant to industry practice (for example, risk of a storm surge may be more important to operations than elevated wind strength; if so, what is the probability that an event will exceed the design threshold during the lifetime of the facility?).Bringing information on existing adaptive mechanisms together with climate scenarios to produce a quantitative risk assessment.Deciding on risk treatment (additional adaptive measures).


Sign in / Sign up

Export Citation Format

Share Document