scholarly journals A Study on the Contract Mechanism for Successful Operation of Franchise : Impact of Relational and Formal Contracts on Partnerships and Franchisee‘s Performance

Keyword(s):  
Author(s):  
Diana M. AYUKAEVA ◽  
Fedor A. VORONIN ◽  
Mikhail A. POLUARSHINOV ◽  
Mikhail A. KHARCHIKOV

The paper discusses the process of integrating scientific equipment into the Russian Segment of the International Space Station (ISS RS) to conduct space experiment using the ISS IS information and control system. The paper addresses the stages in ground processing of scientific equipment that are critical for its successful operation after delivery to the ISS RS: tests on the hardware (vibration and hydraulic tests, electromagnetic compatibility tests, incoming inspection), development of the software for the equipment using ground debugging facility and conducting integrated tests in the checkout facility. It points out the need to update the existing stages of ground preparations for experiments to reduce the hardware ground processing time. Taking as examples the space experiment Terminator and experiments conducted using cargo transportation spacecraft Progress, the paper resents results obtained through the use of the described approach. Key words: information and control system, scientific equipment, space experiment, International Space Station, logistics spacecraft Progress, microgravity.


1997 ◽  
Vol 36 (1) ◽  
pp. 247-254 ◽  
Author(s):  
Gudny Palsdottir ◽  
Paul L. Bishop

The primary purpose of this study was to find the proper operating parameters for successful operation of the nitrification biotowers at the North Regional Wastewater Treatment Plant in Dayton, Ohio, and to recommend an operational protocol to prevent future failures. This plant is subject to regular, periodic biotower upsets. It was found that these upsets are correlated with blooms of snails (Physa gyrina) which it is believed graze the biofilm and devour the nitrifying organisms. Snail control mechanisms are under investigation.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Longhua Tang ◽  
Binoy Paulose Nadappuram ◽  
Paolo Cadinu ◽  
Zhiyu Zhao ◽  
Liang Xue ◽  
...  

AbstractQuantum tunnelling offers a unique opportunity to study nanoscale objects with atomic resolution using electrical readout. However, practical implementation is impeded by the lack of simple, stable probes, that are required for successful operation. Existing platforms offer low throughput and operate in a limited range of analyte concentrations, as there is no active control to transport molecules to the sensor. We report on a standalone tunnelling probe based on double-barrelled capillary nanoelectrodes that do not require a conductive substrate to operate unlike other techniques, such as scanning tunnelling microscopy. These probes can be used to efficiently operate in solution environments and detect single molecules, including mononucleotides, oligonucleotides, and proteins. The probes are simple to fabricate, exhibit remarkable stability, and can be combined with dielectrophoretic trapping, enabling active analyte transport to the tunnelling sensor. The latter allows for up to 5-orders of magnitude increase in event detection rates and sub-femtomolar sensitivity.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3353
Author(s):  
Marina Makrygianni ◽  
Filimon Zacharatos ◽  
Kostas Andritsos ◽  
Ioannis Theodorakos ◽  
Dimitris Reppas ◽  
...  

Current challenges in printed circuit board (PCB) assembly require high-resolution deposition of ultra-fine pitch components (<0.3 mm and <60 μm respectively), high throughput and compatibility with flexible substrates, which are poorly met by the conventional deposition techniques (e.g., stencil printing). Laser-Induced Forward Transfer (LIFT) constitutes an excellent alternative for assembly of electronic components: it is fully compatible with lead-free soldering materials and offers high-resolution printing of solder paste bumps (<60 μm) and throughput (up to 10,000 pads/s). In this work, the laser-process conditions which allow control over the transfer of solder paste bumps and arrays, with form factors in line with the features of fine pitch PCBs, are investigated. The study of solder paste as a function of donor/receiver gap confirmed that controllable printing of bumps containing many microparticles is feasible for a gap < 100 μm from a donor layer thickness set at 100 and 150 μm. The transfer of solder bumps with resolution < 100 μm and solder micropatterns on different substrates, including PCB and silver pads, have been achieved. Finally, the successful operation of a LED interconnected to a pin connector bonded to a laser-printed solder micro-pattern was demonstrated.


Author(s):  
Guimin Chen ◽  
Yanjie Gou ◽  
Aimei Zhang

A compliant multistable mechanism is capable of steadily staying at multiple distinct positions without power input. Many applications including switches, valves, relays, positioners, and reconfigurable robots may benefit from multistability. In this paper, two new approaches for synthesizing compliant multistable mechanisms are proposed, which enable designers to achieve multistability through the use of a single bistable mechanism. The synthesis approaches are described and illustrated by several design examples. Compound use of both approaches is also discussed. The design potential of the synthesis approaches is demonstrated by the successful operation of several instantiations of designs that exhibit three, four, five, and nine stable equilibrium positions, respectively. The synthesis approaches enable us to design a compliant mechanism with a desired number of stable positions.


Author(s):  
Xiaoxu Du ◽  
Huan Wang

The successful operation of an Autonomous Underwater Vehicle (AUV) requires the capability to return to a dock. A number of underwater docking technologies have been proposed and tested in the past. The docking allows the AUV to recharge its batteries, download data and upload new instructions, which is helpful to improve the working time and efficiency. During the underwater docking process, unsteady hydrodynamic interference occurs between the docking device and an AUV. To ensure a successful docking, it is very important that the underwater docking hydrodynamics of AUV is understood. In this paper, numerical simulations based on the computational fluid dynamics (CFD) solutions were carried out for a 1.85m long AUV with maximum 0.2 m in diameter during the docking process. The two-dimensional AUV model without fin and rudder was used in the simulation. The mathematical model based on the Reynolds-averaged Navier-Stokes (RANS) equations was established. The finite volume method (FVM) and the dynamic structured mesh technique were used. SIMPLE algorithm and the k-ε turbulence model in the Descartes coordinates were also adopted. The hydrodynamics characteristics of different docking states were analyzed, such as the different docking velocity, the docking device including baffle or not. The drag coefficients of AUV in the process of docking were computed for various docking conditions, i.e., the AUV moving into the docking in the speed of 1m/s, 2m/s, 5m/s. The results indicate that the drag coefficient increases slowly in the process of AUV getting close to the docking device. When the AUV moves into the docking device, the drag coefficient increases rapidly. Then the drag coefficient decreases rapidly. The drag coefficient decreases with the increase of velocity when AUV enters the docking device. It was also found that the drag coefficient can be effectively reduced by dislodging the baffle of docking device.


1872 ◽  
Vol 20 (130-138) ◽  
pp. 34-35

A galvanic current passes from the batteries at the Royal Observatory, Cape Town, at 1 o’clock, and discharges a gun at the Castle, and through relays drops a time-ball at Port Elizabeth. It appeared to the author that a valuable determination of the velocity of sound might be obtained by measuring upon the chronograph of the Observatory the interval between the time of the sound reaching some point near the gun and that of its arrival at the Observatory. As there is only a single wire between the Observatory and Cape Town, some little difficulty was experienced in making the necessary arrangements, without any interference with the 1 o’clock current to Port Elizabeth; but this difficulty was overcome by a plan which the author describes, and which was brought into successful operation on Feb. 27, 1871. The experiments could not have been carried out, on account of the encroachment they would have made on the time of the Observatory staff, had it not been for the assistance of J. Den, Esq., the acting manager of the Cape Telegraph Company, to whom the author is indebted for the preparation of a good earth-connexion near the gun, for permission to Mr. Kirby, a gentleman attached to the telegraph office, to assist in the experiments, and for a general superintendence of the arrangements at Cape Town. The observed times of hearing the sound were recorded on the chronograph by two observers, situated one (Mr. Kirby) at a distance of 641 feet from the gun, the other (Mr. Mann) at the Observatory, at a distance of 15,449 feet from the gun. The former distance was sufficient to allow the connexion of the main wire to be broken at the telegraph office after the gun had been fired, but before the sound reached the first observer.


2021 ◽  
Author(s):  
Usman Ahmed ◽  
Zhiheng Zhang ◽  
Ruben Ortega Alfonzo

Abstract Horizontal well completions are often equipped with Inflow Control Devices (ICDs) to optimize flow rates across the completion for the whole length of the interval and to increase the oil recovery. The ICD technology has become useful method of optimizing production from horizontal wells in a wide range of applications. It has proved to be beneficial in horizontal water injectors and steam assisted gravity drainage wells. Traditionally the challenges related to early gas or water breakthrough were dealt with complex and costly workover/intervention operations. ICD manipulation used to be done with down-hole tractor conveyed using an electric line (e-line) cable or by utilization of a conventional coiled tubing (CT) string. Wellbore profile, high doglegs, tubular ID, drag and buoyancy forces added limitations to the e-line interventions even with the use of tractor. Utilization of conventional CT string supplement the uncertainties during shifting operations by not having the assurance of accurate depth and forces applied downhole. A field in Saudi Arabia is completed with open-hole packer with ICD completion system. The excessive production from the wells resulted in increase of water cut, hence ICD's shifting was required. As operations become more complex due to fact that there was no mean to assure that ICD is shifted as needed, it was imperative to find ways to maximize both assurance and quality performance. In this particular case, several ICD manipulating jobs were conducted in the horizontal wells. A 2-7/8-in intelligent coiled tubing (ICT) system was used to optimize the well intervention performance by providing downhole real-time feedback. The indication for the correct ICD shifting was confirmed by Casing Collar Locator (CCL) and Tension & Compression signatures. This paper will present the ICT system consists of a customized bottom-hole assembly (BHA) that transmits Tension, compression, differential pressure, temperature and casing collar locator data instantaneously to the surface via a nonintrusive tube wire installed inside the coiled tubing. The main advantages of the ICT system in this operation were: monitoring the downhole force on the shifting tool while performing ICD manipulation, differential pressure, and accurately determining depth from the casing collar locator. Based on the known estimated optimum working ranges for ICD shifting and having access to real-time downhole data, the operator could decide that required force was transmitted to BHA. This bring about saving job time while finding sleeves, efficient open and close of ICD via applying required Weight on Bit (WOB) and even providing a mean to identify ICD that had debris accumulation. The experience acquired using this method in the successful operation in Saudi Arabia yielded recommendations for future similar operations.


Sign in / Sign up

Export Citation Format

Share Document