IRRIGATION SYSTEM AND CULTURAL PRACTICES FOR CROP PRODUCTION UNDER CONTROL ENVIRONMENT PRODUCTION SYSTEM

2006 ◽  
pp. 71-78
Author(s):  
M.A. Nichols
HortScience ◽  
1992 ◽  
Vol 27 (6) ◽  
pp. 671f-671
Author(s):  
M. Marutani ◽  
R. Quitugua ◽  
C. Simpson ◽  
R. Crisostomo

A demonstration vegetable garden was constructed for students in elementary, middle and high schools to expose them to agricultural science. On Charter Day, a University-wide celebration, students were invited to the garden on the University campus. The purpose of this project was twofold: (1) for participants to learn how to make a garden and (2) for visitors to see a variety of available crops and cultural techniques. Approximately 30 vegetable crops were grown. The garden also presented some cultural practices to improve plant development, which included weed control by solarization, mulching, a drip irrigation system, staking, shading and crop cover. Different types of compost bins were shown and various nitrogen-fixing legumes were displayed as useful hedge plants for the garden.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 524a-524 ◽  
Author(s):  
Kent Cushman ◽  
Thomas Horgan

Tomato was grown in Fall 1997 with swine effluent or commercial soluble fertilizer in a plasticulture production system. Four cultivars, `Mountain Delight', `Celebrity', `Equinox', and `Sunbeam', were transplanted to raised beds with plastic mulch and drip irrigation. Preplant fertilizer was not applied. Effluent from the Wiley L. Bean Swine Demonstration Unit's secondary lagoon was filtered through in-line screen filters and applied directly to the plants through the irrigation system. Toward the end of each application, sodium hypochlorite was injected in the line to achieve a free chlorine concentration of ≈1%. Clogging of filters or drip emitters did not occur. Control plants received 100 ppm N from soluble fertilizer injected in irrigation lines supplied by a municipal water source. Number and weight of tomatoes from plants receiving swine effluent were equal to that of plants receiving soluble fertilizer. No differences in fruit quality were evident between treatments. Plant dry weight was also equal for three out of four cultivars. No differences in soil characteristics were detected between treatments after the study. Chemical analysis of the effluent showed a pH of 7.8 and nutrient concentrations of ≈110 ppm NH4-N, 57 ppm P2O5, 150 ppm K2O, and trace amounts of Cu and Zn. Though no differences in yield were detected in this study, the effluent's high pH and high NH4-N content need to be managed more closely for commercial tomato production.


2020 ◽  
Vol 13 (1) ◽  
pp. 144
Author(s):  
Dianxi Zhang ◽  
Muhammad Safdar Sial ◽  
Naveed Ahmad ◽  
António José Filipe ◽  
Phung Anh Thu ◽  
...  

Water scarcity is rising as a global issue, because the planet earth is facing a global water crisis, which is considered something that can destroy environmental sustainability of our planet. The fact is that humanity’s demand is depleting natural resources faster than nature can replenish itself; if human habits and unsustainable use of water resources do not change, water scarcity will inevitably intensify and become a major cause of conflict among different nations of the world. The water scarcity issue is a crucial issue but unfortunately it has not received due attention in past. Pakistan, which once was a water abundant country, now facing a situation of water scarcity. Pakistan has a poor irrigation system which results 60% loss of its water; Pakistan uses more water for crop production than other countries. Likewise, the country harvests water from rainfall, rivers, snow, and glaciers. The country is facing a serious water crisis that is caused by different factors, such as changing climatic conditions, rising population, poor irrigation system, poor political will, and rapid urbanization. The water crisis of Pakistan is expected to worsen in coming years. This is a drastic situation which calls for emergency measures. With this background, the present study provides a detailed view of the water situation in the country with challenges to water management. The study also suggests some recommendations for policymakers to improve the water crisis situation in the future.


Soil Research ◽  
2017 ◽  
Vol 55 (8) ◽  
pp. 778
Author(s):  
G. S. A. Castro ◽  
C. A. C. Crusciol ◽  
C. A. Rosolem ◽  
J. C. Calonego ◽  
K. R. Brye

This work aimed to evaluate the effects of crop rotations and soil acidity amelioration on soil physical properties of an Oxisol (Rhodic Ferralsol or Red Ferrosol in the Australian Soil Classification) from October 2006 to September 2011 in Botucatu, SP, Brazil. Treatments consisted of four soybean (Glycine max)–maize (Zea mays)–rice (Oryza sativa) rotations that differed in their off-season crop, either a signal grass (Urochloa ruziziensis) forage crop, a second crop, a cover crop, or fallow. Two acid-neutralising materials, dolomitic lime (effective calcium carbonate equivalent (ECCE) = 90%) and calcium-magnesium silicate (ECCE = 80%), were surface applied to raise the soil’s base saturation to 70%. Selected soil physical characteristics were evaluated at three depths (0–0.1, 0.1–0.2, and 0.2–0.4 m). In the top 0.1 m, soil bulk density was lowest (P < 0.05) and macroporosity and aggregate stability index were greatest (P < 0.05) in the forage crop compared with all other production systems. Also, bulk density was lower (P < 0.05) and macroporosity was greater (P < 0.05) in the acid-neutralising-amended than the unamended control soil. In the 0.1–0.2-m interval, mean weight diameter and mean geometric diameter were greater (P < 0.05) in the forage crop compared with all other production systems. All soil properties evaluated in this study in the 0.2–0.4-m interval were unaffected by production system or soil amendment after five complete cropping cycles. Results of this study demonstrated that certain soil physical properties can be improved in a no-tillage soybean–maize–rice rotation using a forage crop in the off-season and with the addition of acid-neutralising soil amendments. Any soil and crop management practices that improve soil physical properties will likely contribute to sustaining long-term soil and crop productivity in areas with highly weathered, organic matter-depleted, acidic Oxisols.


2006 ◽  
Vol 51 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Petar Gogic

The aim of the study was to examine the effect of livestock production on the economic efficiency of investments in irrigation projects. The study was based on a model focused on field crop/livestock production using the data of crop yields in field crop production with or without irrigation, financial results of cattle fattening and milk production and the input and output price relationship. The influence of livestock production on the economic effects of irrigation system utilization was evaluated using the indices of economic efficiency of investments - internal rate of return, net present value and pay-back period. The data on the amount of investments required for the construction of the irrigation system, economic benefit achieved by optimizing production under both irrigated and non-irrigated conditions, with and without livestock production were used to determine these indices.


Author(s):  
Ganesh Das ◽  
Sankar Saha ◽  
F. H. Rahman ◽  
Surajit Sarkar ◽  
Sujan Biswas ◽  
...  

Terai region of West Bengal fall under high rainfall region but 90% rainfall occurs in kharif season and drought observed during rabi season.  NICRA project started in the Cooch Behar District during 2011. The project area and plan of work were selected on the basis of participatory rural appraisal method. The experimental trial was conducted from 2011 to 2019. The objective of the experiment was to development of sustainable irrigation system through renovation of pond and its impact on crop production. It was found from the study that pond renovation has potential impact on increasing crop yield, cropping intensity, copping system and area of irrigation.


2022 ◽  
pp. 266-287
Author(s):  
Maria de Fátima Lorena Oliveira ◽  
Sergio Oliveira ◽  
António Terrão Russo ◽  
kiril bahcevandziev ◽  
Ana Bela M. Lopes ◽  
...  

This chapter aims to analyze the rice production system at the Baixo Mondego Valley to understand the main concerns. Field research and field trials were carried out to analyze rice production, marketing systems, and different irrigation alternatives. An analysis on the worries was made, and a correlational attempt was done. The results show a production system oriented by agri-environmental policies. The problems related with rice irrigation are water scarcity, environmental impacts on water quality, agroecosystems, and methane emissions. To reduce water demand, the alternate wetting and drying flooding method, and the improvement of the precise land levelling were studied on the scope of MEDWATERICE Project. About 12-14% of water saving was observed, with impact on production lower than 3.5%, allowing period of 11-19 days of dry soil, expecting positive implications for greenhouse gas emissions. Innovation in the irrigation system may help to reduce some of the farmers' concerns and help to better adapt this crop to the new needs of agriculture in terms of environmental competitiveness.


Sign in / Sign up

Export Citation Format

Share Document