Electro-mechanical anisotropy of phosphorene

Nanoscale ◽  
2015 ◽  
Vol 7 (21) ◽  
pp. 9746-9751 ◽  
Author(s):  
Luqing Wang ◽  
Alex Kutana ◽  
Xiaolong Zou ◽  
Boris I. Yakobson

The external stress enhances the inherent anisotropy of phosphorene, affecting various basic physical properties including Young's modulus, Poisson's ratio, band gap, and effective carrier masses. We compute basic properties of uniaxially-stressed phosphorene and present all final results in compact analytical forms.

Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. C195-C208 ◽  
Author(s):  
Fei Gong ◽  
Bangrang Di ◽  
Jianxin Wei ◽  
Pinbo Ding ◽  
He Li ◽  
...  

Anisotropy in shales is an important issue in exploration and reservoir geophysics, and it has been proven extremely difficult to correlate anisotropy in natural shale by means of a single variable (in this case, clay content or compaction stress) because of the influence of multiple factors, such as water content, total organic carbon content, and complex mineral compositions. Thus, we used quartz, kaolinite, calcite, and kerogen extract as the primary materials to construct two sets of synthetic shale samples, each with a different clay content by weight and a different compaction stress. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry and saturated samples of our synthetic shales. The results reveal that the velocities decrease with clay content by weight and increase with compaction stress and that these changes are significant at low compaction stress. The velocity anisotropy of the samples increases with clay content and compaction stress due to the increasing alignment of the clay platelets. S-wave anisotropy is more sensitive to the clay content or compaction stress than P-wave anisotropy. The dynamic Young’s modulus [Formula: see text] of the samples decreases with clay content and increases with compaction stress, whereas Poisson’s ratio [Formula: see text] increases with clay content and decreases with compaction stress. Young’s modulus perpendicular to the symmetry axis is always larger than that parallel to the symmetry axis, but Poisson’s ratio perpendicular to the symmetry axis may be larger or smaller than that parallel to the symmetry axis, which indicates that mechanical properties have obvious anisotropic behavior. The elastic properties and anisotropy are also affected by fluids; the values of elastic and mechanical anisotropy parameters in saturated samples are significantly lower than those in dry samples.


Geophysics ◽  
2018 ◽  
Vol 83 (2) ◽  
pp. MR57-MR66 ◽  
Author(s):  
Fei Gong ◽  
Bangrang Di ◽  
Jianxin Wei ◽  
Pinbo Ding ◽  
Xiao Pan ◽  
...  

Clay minerals are the most abundant materials in shale. Their presence significantly influences the elastic behavior of reservoir rocks as a function of mineral type, volume, and distribution, and their orientation controls the shale’s intrinsic anisotropic behaviors. Thus, knowing the elastic properties of shale with different types of clay minerals is imperative for fully understanding the seismic properties of the reservoir. However, it is extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay), due to the influences of multiple factors, including water, total organic carbon content, complex mineral composition, and so on. Thus, we use quartz, clay (kaolinite, illite, and smectite), carbonate, and kerogen extract as the primary materials to construct synthetic shale with different types of clay. Ultrasonic experiments were conducted to study the anisotropy of velocity and mechanical properties (Young’s modulus and Poisson’s ratio) in dry synthetic shale samples as a function of applied axial stress. The results show that the velocity of samples increases with applied pressure and the rate of velocity increase is higher at low pressures. Similarly, the dynamic Young’s modulus and Poisson’s ratio increase with applied pressure; [Formula: see text] is always larger than [Formula: see text], but [Formula: see text] may be larger or smaller than [Formula: see text]. Furthermore, velocity anisotropy and mechanical anisotropy decrease with the increase of stress and are sensitive to stress and lithology. The closure of large aspect-ratio pores (and/or microcracks) seems to be a dominant mechanism controlling the change of anisotropy. Finally, the changes in mechanical anisotropy under applied stress are larger compared with the changes in velocity anisotropy, indicating that mechanical properties are more sensitive to the changes in rock property.


2006 ◽  
Vol 914 ◽  
Author(s):  
Jiping Ye ◽  
Satoshi Shimizu ◽  
Shigeo Sato ◽  
Nobuo Kojima ◽  
Junnji Noro

AbstractA recently developed bidirectional thermal expansion measurement (BTEM) method was applied to different types of low-k films to substantiate the reliability of the Poisson's ratio found with this technique and thereby to corroborate its practical utility. In this work, the Poisson's ratio was determined by obtaining the temperature gradient of the biaxial thermal stress from substrate curvature measurements, the temperature gradient of the whole thermal expansion strain along the film thickness from x-ray reflectivity (XRR) measurements, and reduced modulus of the film from nanoindentation measurements. For silicon oxide-based SiOC film having a thickness of 382.5 nm, the Poisson's ratio, Young's modulus and thermal extension coefficient (TEC) were determined to be Vf = 0.26, αf =21 ppm/K and Ef =9,7 GPa. These data are close to the levels of metals and polymers rather than the levels of fused silicon oxide, which is characterized by Vf = 0.17 and Er = 69.6 GPa. The alkyl component in the silicon oxide-based framework is thought to act as an agent in reducing the modulus and elevating the Poisson's ratio in SiOC low-k materials. In the case of an organic polymer SiLK film with a thickness of 501.5 nm, the Poisson's ratio, Young's modulus and TEC were determined to be Vf = 0.39, αf =74 ppm/K and Er =3.1 GPa, which are in the typical range of V= 0.34~0.47 with E =1.0~10 GPa for polymer materials. From the viewpoint of the relationship between the Poisson's ratio and Young's modulus as classified by different material types, the Poisson's ratios found for the silicon oxide-based SiOC and organic SiLK films are reasonable values, thereby confirming that BTEM is a reliable and effective method for evaluating the Poisson's ratio of thin films.


2008 ◽  
Vol 33-37 ◽  
pp. 969-974 ◽  
Author(s):  
Bong Bu Jung ◽  
Seong Hyun Ko ◽  
Hun Kee Lee ◽  
Hyun Chul Park

This paper will discuss two different techniques to measure mechanical properties of thin film, bulge test and nano-indentation test. In the bulge test, uniform pressure applies to one side of thin film. Measurement of the membrane deflection as a function of the applied pressure allows one to determine the mechanical properties such as the elastic modulus and the residual stress. Nano-indentation measurements are accomplished by pushing the indenter tip into a sample and then withdrawing it, recording the force required as a function of position. . In this study, modified King’s model can be used to estimate the mechanical properties of the thin film in order to avoid the effect of substrates. Both techniques can be used to determine Young’s modulus or Poisson’s ratio, but in both cases knowledge of the other variables is needed. However, the mathematical relationship between the modulus and Poisson's ratio is different for the two experimental techniques. Hence, achieving agreement between the techniques means that the modulus and Poisson’s ratio and Young’s modulus of thin films can be determined with no a priori knowledge of either.


Author(s):  
Fang Li ◽  
Liuxi Cai ◽  
Shun-sen Wang ◽  
Zhenping Feng

Abstract Finite element method (FEM) was used to study the stress peak of stress S11 (Radial stress component in X-axis) on the steam turbine blade surface of four typical erosion-resistant coatings (Fe2B, CrN, Cr3C2-NiCr and Al2O3-13%TiO2). The effect of four parameters, such as impact velocity, coating thickness, Young's modulus and Poisson's ratio on the stress peak of stress S11 were analyzed. Results show that: the position of tensile stress peak and compressive stress peak of stress S11 are far away from the impact center point with the increase of impact velocity. When coating thickness is equal to or greater than 10μm, the magnitude of tensile stress peak of stress S11 on the four coating surfaces does not change with the coating thickness at different impact velocities. When coating thickness is equal to or greater than 2μm, the magnitude of tensile stress peak of stress S11 of four coatings show a trend of increasing first and then decreasing with the increase of Young's modulus. Meanwhile, the larger the Poisson's ratio, the smaller the tensile stress peak of stress S11. After optimization, When coating thickness is 2μm, Poisson's ratio is 0.35 and Young's modulus is 800 GPa, the Fe2B coating has the strongest erosion resistance under the same impact conditions, followed by Cr3C2-NiCr, CrN, and the Al2O3- 13%TiO2 coating, Al2O3-13%TiO2 coating has the worst erosion resistance.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0011
Author(s):  
Daniel Sturnick ◽  
Guilherme Saito ◽  
Jonathan Deland ◽  
Constantine Demetracopoulos ◽  
Xiang Chen ◽  
...  

Category: Ankle Arthritis Introduction/Purpose: Loosening of the tibial component is the primary failure mode in total ankle arthroplasty (TAA). The mechanics of the tibial component loosening has not been fully elucidated. Clinically observed radiolucency and cyst formation in the periprosthetic bone may be associated with unfavorable load sharing at and adjacent to the tibial bone-implant interface contributory to implant loosening. However, no study has fully investigated the load transfer from the tibial component to the bone under multiaxial loads in the ankle. The objective of this study was to utilize subject-specific finite element (FE) models to investigate the load transfer through tibial bone-implant interface, as well as periprosthetic bone strains under simulated multiaxial loads. Methods: Bone-implant FE models were developed from CT datasets of three cadaveric specimens that underwent TAA using a modern fixed-bearing tibial implant (a cobalt-chrome tray with a polyethylene bearing, Salto Talaris, Integra LifeSciences). Implant placement was estimated from the post-operative CT scans. Bone was modeled as isotropic elastic material with inhomogeneous Young’s modulus (determined from CT Hounsfield units) and a uniform Poisson’s ratio of 0.3. The tibial tray (Young’s modulus: 200,000 MPa, Poisson’s ratio: 0.3) and the polyethylene bearing (Young’s modulus: 600 MPa, Poisson’s ratio: 0.4) were modeled as isotropic elastic. A 100-N compressive force, a 300-N anterior force, and a 3-Nm moment were applied to two literature based loading regions on the surface of the polyethylene bearing. The proximal tibia was fixed in all directions. The bone-implant contact was modeled as frictional with a coefficient of 0.7, whereas the polyethylene bearing was bonded to the tray. Results: Along the long axis of the tibia, load was transferred to the bone primarily through the flat bone-contacting base of the tibial tray and the cylindrical top of the keel, little amount of load was transferred to the bone between those two features (Fig. 1A). Low strain was observed in bone regions medial and lateral to the keel of the tibial tray, where bone cysts were often observed clinically (Fig. 1A). On average, approximated 70% of load was transferred through the anterior aspect of the tibial tray at the flat bone-contacting base, which corresponded to the relatively high bone strain adjacent to the implant edge in the anterior bone-implant interface (Fig. 1B). Conclusion: Our results demonstrated a two-step load transfer pattern along the long axis of the tibia, revealing regions with low bone strain peripheral to the keel indicative to stress shielding. Those regions were consistent with the locations of bone cysts observed clinically, which may be explained by the stress shielding associated remodeling of bone. These findings could also describe the mechanism of implant loosening and failure. Future studies may use our model to simulate more loading scenarios, as well as different implant placement and design, to identify means to optimize load transfer to the bone and prevent stress shielding.


1996 ◽  
Vol 3 (3) ◽  
pp. 145-185
Author(s):  
Robert J.M. Craik

A statistical energy analysis model of a building was used to assess the effect of design changes on sound transmission. Systematic changes were made to the material properties (density, Young's modulus, Poisson's ratio and internal loss factor) and to the dimensions (thickness and room size). These changes resulted in a redistribution of the energy throughout the building causing the noise level to go up in some rooms and to go down in others. For each case examined it was found that the effect of several changes could be estimated from the sum of the individual changes. Thus a change of 20% in the density resulted in approximately double the change in DnTw that was obtained from a 10% change in density. The same additive effect was also found to apply if more than one variable was changed at the same time. Thus the change in DnTw resulting from a small change in Young's modulus for the floors and a small change in the density of the walls can be estimated from the sum of the two individual effects. Changes to the thickness and density of the walls and floors have the greatest effect on sound transmission whilst changes to Young's modulus and Poisson's ratio have a much smaller effect. Damping can also have a significant effect on transmission particularly far from the source.


Sign in / Sign up

Export Citation Format

Share Document