Inter-comparison of environmental low-cost sensors on Arduino platform

2020 ◽  
Vol 63 (1) ◽  
pp. 35-45
Author(s):  
Ariel Fabricio Scagliotti ◽  
Guillermo Antonio Jorge

Abstract Low-cost sensors for relative humidity, pressure, and ambient temperature have begun to be used regularly for different applications in which the measurement or control of systems or processes is required using an affordable technology. However, in most cases, reliable information about their performance, capabilities, and limitations is not available. In this work, we aim to establish a systematic comparison between different sensors widely used in conjunction with the Arduino platform, such as the DS18b20, DHT11, BMP180, and BME280 sensors. Laboratory and field trials were performed to determine linearity, accuracy, precision, resolution, response times, and response to loss of power. The results indicate that these devices, despite having a very low cost, can provide relatively reliable information, taking into account their manufacturing characteristics and the specific use required. In turn, this work offers useful information to choose the sensor that best suits a particular project.

2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Kazuyuki Miyamoto ◽  
Keisuke Suzuki ◽  
Hirokazu Ohtaki ◽  
Motoyasu Nakamura ◽  
Hiroki Yamaga ◽  
...  

Abstract Background Heatstroke is associated with exposure to high ambient temperature (AT) and relative humidity (RH), and an increased risk of organ damage or death. Previously proposed animal models of heatstroke disregard the impact of RH. Therefore, we aimed to establish and validate an animal model of heatstroke considering RH. To validate our model, we also examined the effect of hydration and investigated gene expression of cotransporter proteins in the intestinal membranes after heat exposure. Methods Mildly dehydrated adult male C57/BL6J mice were subjected to three AT conditions (37 °C, 41 °C, or 43 °C) at RH > 99% and monitored with WetBulb globe temperature (WBGT) for 1 h. The survival rate, body weight, core body temperature, blood parameters, and histologically confirmed tissue damage were evaluated to establish a mouse heatstroke model. Then, the mice received no treatment, water, or oral rehydration solution (ORS) before and after heat exposure; subsequent organ damage was compared using our model. Thereafter, we investigated cotransporter protein gene expressions in the intestinal membranes of mice that received no treatment, water, or ORS. Results The survival rates of mice exposed to ATs of 37 °C, 41 °C, and 43 °C were 100%, 83.3%, and 0%, respectively. From this result, we excluded AT43. Mice in the AT 41 °C group appeared to be more dehydrated than those in the AT 37 °C group. WBGT in the AT 41 °C group was > 44 °C; core body temperature in this group reached 41.3 ± 0.08 °C during heat exposure and decreased to 34.0 ± 0.18 °C, returning to baseline after 8 h which showed a biphasic thermal dysregulation response. The AT 41 °C group presented with greater hepatic, renal, and musculoskeletal damage than did the other groups. The impact of ORS on recovery was greater than that of water or no treatment. The administration of ORS with heat exposure increased cotransporter gene expression in the intestines and reduced heatstroke-related damage. Conclusions We developed a novel mouse heatstroke model that considered AT and RH. We found that ORS administration improved inadequate circulation and reduced tissue injury by increasing cotransporter gene expression in the intestines.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3338
Author(s):  
Ivan Vajs ◽  
Dejan Drajic ◽  
Nenad Gligoric ◽  
Ilija Radovanovic ◽  
Ivan Popovic

Existing government air quality monitoring networks consist of static measurement stations, which are highly reliable and accurately measure a wide range of air pollutants, but they are very large, expensive and require significant amounts of maintenance. As a promising solution, low-cost sensors are being introduced as complementary, air quality monitoring stations. These sensors are, however, not reliable due to the lower accuracy, short life cycle and corresponding calibration issues. Recent studies have shown that low-cost sensors are affected by relative humidity and temperature. In this paper, we explore methods to additionally improve the calibration algorithms with the aim to increase the measurement accuracy considering the impact of temperature and humidity on the readings, by using machine learning. A detailed comparative analysis of linear regression, artificial neural network and random forest algorithms are presented, analyzing their performance on the measurements of CO, NO2 and PM10 particles, with promising results and an achieved R2 of 0.93–0.97, 0.82–0.94 and 0.73–0.89 dependent on the observed period of the year, respectively, for each pollutant. A comprehensive analysis and recommendations on how low-cost sensors could be used as complementary monitoring stations to the reference ones, to increase spatial and temporal measurement resolution, is provided.


2003 ◽  
Vol 1819 (1) ◽  
pp. 338-342 ◽  
Author(s):  
Simon Oloo ◽  
Rob Lindsay ◽  
Sam Mothilal

The geology of the northeastern part of the province of KwaZulu–Natal, South Africa, is predominantly alluvial with vast deposits of sands. Suitable gravel sources are hard to come by, which results in high graveling and regraveling costs brought about by long haul distances and accelerated gravel loss. Most gravel roads carry fewer than 500 vehicles per day of which less than 10% are heavy vehicles. The high cost of regraveling has led to consideration of upgrading such roads to surfaced standard, even though traffic volumes do not justify upgrading. Traditional chip seals are expensive and cannot be economically justified on roads that carry fewer than 500 vehicles per day. The KwaZulu–Natal Department of Transport is actively involved in efforts to identify cost-effective alternative surfacing products for low-volume roads. Field trials were conducted with Otta seals and Gravseals, which have been used successfully in other countries, as low-cost surfacing products for low-volume roads. The Otta seal is formed by placing graded aggregates on a relatively thick film of soft binder that, because of traffic and rolling, works its way through the aggregates. Gravseal consists of a special semipriming rubberized binder that is covered by a graded aggregate. Both Otta seals and Gravseals provide relatively flexible bituminous surfaces suitable for low-volume roads. Cost savings are derived mainly from the broad aggregate specifications, which allow for the use of marginal materials.


2021 ◽  
pp. 71-72
Author(s):  
Adamu, B. ◽  
Abdullahi, S. ◽  
Saidu, S. G ◽  
Yustus Sunday Francis

The term 'Hydroponics' was derived from Greek words 'hydro' means water and 'ponics' means labor. Hydroponic is a modern agricultural technique that uses nutrient solution rather than soil solution for fodder production. As population increases the food demand also increased, the existing system of agriculture will not be able to meet the food requirement in the near future due to environmental challenges in the industry. The major environmental factors affecting the hydroponics production system are; Temperature, relative humidity, and light. The objectives of this studies are to examine the hydroponics greenhouse technologies, impact of environmental factors on hydroponics greenhouse cultivation and challenges of growing on hydroponics greenhouse system. This study revealed that hydroponics greenhouse cultivation is a better option for improved fodder production, water utilization, palatability and digestibility.


2020 ◽  
Vol 40 (2) ◽  
pp. 92-103
Author(s):  
K. O. Bello ◽  
A. E. Adiatu ◽  
M. O. Osunlakin ◽  
O. O. Oni

One hundred and thirty five 18weeks old Bovans Nera Black strain pullets were used in a 10week study to determine their heat balance and blood profile under varying stocking density in locally fabricated metal-type cage system. The cages were stocked 2, 3 and 4birds/cell. Daily ambient temperature and relative humidity of the cage and rectal temperature of the birds were taken and heat balance calculated. Record of Packed cell volume (PCV), Haemoglobin concentration (Hb), Red blood cell (RBC), White blood count (WBC) and differential of the birds were taken at beginning and end of the study for the haematological indices while blood glucose, total protein, Albumin and blood urea were taken for the bio-chemical measurements. Ambient temperature, relative humidity, and heat balance showed no significant (P>0.05) difference with cage stocking density. Cage stocking density had significant (P<0.05) effect on rectal temperature of layers. Bird stocked 3/cell recorded the least (41.14oC) rectal temperature while those stocked 4/cell recorded the highest (41.27oC). All the haematological parameters of the birds were not significantly (P>0.05) influenced by stocking density of the cage type. Bio-chemical measurements were not significantly (P>0.05) different among layers under varying stocking density of the cage except total protein (P<0.05). Layers stocked 4/cell recorded highest (5.22g/dl) total protein while those stocked 3/cell had the least value (4.37g/dl). However, the values were within the normal range recommended for healthy chicken. The study concluded that locally fabricated metal-type battery cage could be used to rear layers and stocking density of 3birds/cell is ideal without compromising the welfare of the birds.


2018 ◽  
Vol 2018 ◽  
pp. 1-20 ◽  
Author(s):  
Markus Bajones ◽  
David Fischinger ◽  
Astrid Weiss ◽  
Daniel Wolf ◽  
Markus Vincze ◽  
...  

We present the robot developed within the Hobbit project, a socially assistive service robot aiming at the challenge of enabling prolonged independent living of elderly people in their own homes. We present the second prototype (Hobbit PT2) in terms of hardware and functionality improvements following first user studies. Our main contribution lies within the description of all components developed within the Hobbit project, leading to autonomous operation of 371 days during field trials in Austria, Greece, and Sweden. In these field trials, we studied how 18 elderly users (aged 75 years and older) lived with the autonomously interacting service robot over multiple weeks. To the best of our knowledge, this is the first time a multifunctional, low-cost service robot equipped with a manipulator was studied and evaluated for several weeks under real-world conditions. We show that Hobbit’s adaptive approach towards the user increasingly eased the interaction between the users and Hobbit. We provide lessons learned regarding the need for adaptive behavior coordination, support during emergency situations, and clear communication of robotic actions and their consequences for fellow researchers who are developing an autonomous, low-cost service robot designed to interact with their users in domestic contexts. Our trials show the necessity to move out into actual user homes, as only there can we encounter issues such as misinterpretation of actions during unscripted human-robot interaction.


2018 ◽  
Vol 32 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Sai Nyan Lin Tun ◽  
Than Htut Aung ◽  
Aye Sandar Mon ◽  
Pyay Hein Kyaw ◽  
Wattasit Siriwong ◽  
...  

Purpose Dust (particulate matters) is very dangerous to our health as it is not visible with our naked eyes. Emissions of dust concentrations in the natural environment can occur mainly by road traffic, constructions and dust generating working environments. The purpose of this paper is to assess the ambient dust pollution status and to find out the association between PM concentrations and other determinant factors such as wind speed, ambient temperature, relative humidity and traffic congestion. Design/methodology/approach A cross-sectional study was conducted for two consecutive months (June and July, 2016) at a residential site (Defence Services Liver Hospital, Mingaladon) and a commercial site (Htouk-kyant Junction, Mingaladon) based on WHO Air Quality Reference Guideline Value (24-hour average). Hourly monitoring of PM2.5 and PM10 concentration and determinant factors such as traffic congestion, wind speed, ambient temperature and relative humidity for 24 hours a day was performed in both study sites. CW-HAT200 handheld particulate matters monitoring device was used to assess PM concentrations, temperature and humidity while traffic congestion was monitored by CCTV cameras. Findings The baseline PM2.5 and PM10 concentrations of Mingaladon area were (28.50±11.49)µg/m3 and (52.69±23.53)µg/m3, means 61.48 percent of PM2.5 concentration and 54.92 percent of PM10 concentration exceeded than the WHO reference value during the study period. PM concentration usually reached a peak during early morning (within 3:00 a.m.-5:00 a.m.) and at night (after 9:00 p.m.). PM2.5 concentration mainly depends on traffic congestion and temperature (adjusted R2=0.286), while PM10 concentration depends on traffic congestion and relative humidity (adjusted R2=0.292). Wind speed played a negative role in both PM2.5 and PM10 concentration with r=−0.228 and r=−0.266. Originality/value The air quality of the study area did not reach the satisfiable condition. The main cause of increased dust pollution in the whole study area was high traffic congestion (R2=0.63 and 0.60 for PM2.5 and PM10 concentration).


Sign in / Sign up

Export Citation Format

Share Document