scholarly journals Significance of diphtheria toxin in neuropathy development and protective effect of nerves growth factor

2021 ◽  
Vol XXX (3-4) ◽  
pp. 46-49
Author(s):  
М. N. Sorokina ◽  
М. V. Davydovskay ◽  
А. V. Romanjuk ◽  
N. I. Chalisova ◽  
N. V. Skripchenko ◽  
...  

In experiments in vitro and in vivo competitive relationships of diphtheria toxin and nerves growth factor were shown: in organotypical culture (300 sensor ganglions) and in model of experimental diphtheria neuropathy in 66 white rats. There were given evidences of protective action of nerves growth factor, inhibiting the toxic effect of diphtheria toxin. Contents of free toxin and specific immune comlexes was studied in 25 children with diphtheria polyneuropathy. Favourable outcome of disease was observed in children with high presence of nerves growth factor in blood serum, thus giving new approach in treatment of nervous system diseases.

2013 ◽  
Vol 81 (11) ◽  
pp. 3992-4000 ◽  
Author(s):  
Leila M. Sevigny ◽  
Brian J. Booth ◽  
Kirk J. Rowley ◽  
Brett A. Leav ◽  
Peter S. Cheslock ◽  
...  

ABSTRACTDiphtheria antitoxin (DAT) has been the cornerstone of the treatment ofCorynebacterium diphtheriaeinfection for more than 100 years. Although the global incidence of diphtheria has declined steadily over the last quarter of the 20th century, the disease remains endemic in many parts of the world, and significant outbreaks still occur. DAT is an equine polyclonal antibody that is not commercially available in the United States and is in short supply globally. A safer, more readily available alternative to DAT would be desirable. In the current study, we obtained human monoclonal antibodies (hMAbs) directly from antibody-secreting cells in the circulation of immunized human volunteers. We isolated a panel of diverse hMAbs that recognized diphtheria toxoid, as well as a variety of recombinant protein fragments of diphtheria toxin. Forty-five unique hMAbs were tested for neutralization of diphtheria toxin inin vitrocytotoxicity assays with a 50% effective concentration of 0.65 ng/ml for the lead candidate hMAb, 315C4. In addition, 25 μg of 315C4 completely protected guinea pigs from intoxication in anin vivolethality model, yielding an estimated relative potency of 64 IU/mg. In comparison, 1.6 IU of DAT was necessary for full protection from morbidity and mortality in this model. We further established that our lead candidate hMAb binds to the receptor-binding domain of diphtheria toxin and physically blocks the toxin from binding to the putative receptor, heparin-binding epidermal growth factor-like growth factor. The discovery of a specific and potent human neutralizing antibody against diphtheria toxin holds promise as a potential therapeutic.


1963 ◽  
Vol 09 (03) ◽  
pp. 512-524 ◽  
Author(s):  
Chava Kirschmann ◽  
Sara Aloof ◽  
Andre de Vries

SummaryLysolecithin is adsorbed to washed blood platelets and, at sufficient concentration, lyses them, inhibits their clot-retracting activity and promotes their thromboplastin-generating activity. Lysolecithin adsorption to the platelet was studied by using P32-labelled lysolecithin obtained from the liver of rats injected with labelled orthophosphate. The amount of lysolecithin adsorbed to the surface of the washed platelet in saline medium is dependent on the concentration of lysolecithin in solution and reaches saturation — 5 × 10-8 jig per platelet — at a concentration of 9—10 µg per ml. Platelet lysis in saline medium begins at a lysolecithin concentration higher than 18 jig per ml. Plasma and albumin prevent adsorption of lysolecithin to the platelet and protect the platelet from damage by lysolecithin. Albumin is able to remove previously adsorbed lysolecithin from the platelet surface. The protective action of plasma explains the lack of platelet damage in blood, the plasma lecithin of which has been converted to lysolecithin by the action of Vipera palestinae venom phosphatidase, in vitro and in vivo.


2020 ◽  
Vol 27 ◽  
Author(s):  
Reyaz Hassan Mir ◽  
Abdul Jalil Shah ◽  
Roohi Mohi-ud-din ◽  
Faheem Hyder Potoo ◽  
Mohd. Akbar Dar ◽  
...  

: Alzheimer's disease (AD) is a chronic neurodegenerative brain disorder characterized by memory impairment, dementia, oxidative stress in elderly people. Currently, only a few drugs are available in the market with various adverse effects. So to develop new drugs with protective action against the disease, research is turning to the identification of plant products as a remedy. Natural compounds with anti-inflammatory activity could be good candidates for developing effective therapeutic strategies. Phytochemicals including Curcumin, Resveratrol, Quercetin, Huperzine-A, Rosmarinic acid, genistein, obovatol, and Oxyresvertarol were reported molecules for the treatment of AD. Several alkaloids such as galantamine, oridonin, glaucocalyxin B, tetrandrine, berberine, anatabine have been shown anti-inflammatory effects in AD models in vitro as well as in-vivo. In conclusion, natural products from plants represent interesting candidates for the treatment of AD. This review highlights the potential of specific compounds from natural products along with their synthetic derivatives to counteract AD in the CNS.


Author(s):  
Eishin Yaoita ◽  
Masaaki Nameta ◽  
Yutaka Yoshida ◽  
Hidehiko Fujinaka

AbstractFibroblast growth factor 2 (FGF2) augments podocyte injury, which induces glomerulosclerosis, although the mechanisms remain obscure. In this study, we investigated the effects of FGF2 on cultured podocytes with interdigitating cell processes in rats. After 48 h incubation with FGF2 dynamic changes in the shape of primary processes and cell bodies of podocytes resulted in the loss of interdigitation, which was clearly shown by time-lapse photography. FGF2 reduced the gene expressions of constituents of the slit diaphragm, inflections of intercellular junctions positive for nephrin, and the width of the intercellular space. Immunostaining for the proliferation marker Ki-67 was rarely seen and weakly stained in the control without FGF2, whereas intensely stained cells were frequently found in the presence of FGF2. Binucleation and cell division were also observed, although no significant increase in cell number was shown. An in vitro scratch assay revealed that FGF2 enhanced migration of podocytes. These findings show that FGF2 makes podocytes to transition from the quiescent state into the cell cycle and change their morphology due to enhanced motility, and that the culture system in this study is useful for analyzing the pathological changes of podocytes in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samir Sissaoui ◽  
Stuart Egginton ◽  
Ling Ting ◽  
Asif Ahmed ◽  
Peter W. Hewett

AbstractPlacenta growth factor (PlGF) is a pro-inflammatory angiogenic mediator that promotes many pathologies including diabetic complications and atherosclerosis. Widespread endothelial dysfunction precedes the onset of these conditions. As very little is known of the mechanism(s) controlling PlGF expression in pathology we investigated the role of hyperglycaemia in the regulation of PlGF production in endothelial cells. Hyperglycaemia stimulated PlGF secretion in cultured primary endothelial cells, which was suppressed by IGF-1-mediated PI3K/Akt activation. Inhibition of PI3K activity resulted in significant PlGF mRNA up-regulation and protein secretion. Similarly, loss or inhibition of Akt activity significantly increased basal PlGF expression and prevented any further PlGF secretion in hyperglycaemia. Conversely, constitutive Akt activation blocked PlGF secretion irrespective of upstream PI3K activity demonstrating that Akt is a central regulator of PlGF expression. Knock-down of the Forkhead box O-1 (FOXO1) transcription factor, which is negatively regulated by Akt, suppressed both basal and hyperglycaemia-induced PlGF secretion, whilst FOXO1 gain-of-function up-regulated PlGF in vitro and in vivo. FOXO1 association to a FOXO binding sequence identified in the PlGF promoter also increased in hyperglycaemia. This study identifies the PI3K/Akt/FOXO1 signalling axis as a key regulator of PlGF expression and unifying pathway by which PlGF may contribute to common disorders characterised by endothelial dysfunction, providing a target for therapy.


Sign in / Sign up

Export Citation Format

Share Document