Temperature, osmotic and acidic activity of infusion solutions as an integral part of their mechanism of action

2021 ◽  
Vol 19 (2) ◽  
pp. 175-182
Author(s):  
Natalia A. Urakova

A review of the literature shows that the physical-chemical properties of infusion solutions can be an integral part of the mechanism of their local action on the routes of administration. This new scientific and practical direction in clinical pharmacology was born at the end of the 20th century in Russia. Initially, it was found that isotonic solutions of glucose, mannitol, and sodium chloride with different temperatures have different local effects on the metabolism and viability of isolated biological objects such as mitochondria and blood plasma. At the same time, it was shown that increasing the temperature of solutions from +37 to +45C accelerates the metabolism of these biological objects, increases their reactivity and enhances their response to the action of many drugs-activators of metabolism and function. And vice versa, lowering the temperature of these solutions from +37 to +20C and below (up to 0C) slows down their metabolism, reduces their reactivity, weakens their response to the action of drugs-activators of metabolism and function, and also increases survival in conditions of ischemia and hypoxia. These results allowed us to recommend warm infusion solutions as universal means of activating aerobic metabolism in tissues and the response of tissues to drugs with local physical-chemical action, and cold infusion solutions as universal means of inhibiting aerobic metabolism in tissues and increasing the resistance of tissues to the action of drugs on them. Following this, it was shown that many infusion solutions do not have isoosmotic activity, since the osmotic activity of drugs is not controlled. Therefore, one part of the solutions has hypotonic activity, and the other part has hypertonic activity. Therefore, sometimes the infusion solution can increase the hypoosmotic or hyperosmotic activity of the blood plasma. Then it was shown that the absolute majority of infusion solutions do not have a pH of 7.4. At the same time, very many infusion solutions have acidic activity, so they have an acidifying effect on the blood. The chronology of the development of inventions based on the achievements of the physical-chemical pharmacology of infusion agents is shown.

2011 ◽  
Vol 68 (9-10) ◽  
pp. 1517-1522 ◽  
Author(s):  
S.M. Ivanova ◽  
N.A. Brazhe ◽  
O.G. Luneva ◽  
Y.V. Yarlikova ◽  
O.I. Labetskaya ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 2076-2079
Author(s):  
Zhao Lei ◽  
Yuan Jun Song ◽  
Jing Jing Wu ◽  
Dai Shi ◽  
Li Ying Zhu ◽  
...  

The influence of heat-treatment in nitrogen atmosphere at different temperatures, time and stress on the physical–chemical properties and the surface of PBO fibers were investigated through Single fiber tensile, TG and SEM analysis. The results show that the tensile strength of PBO fibers dose not change so much before 600°C, but for heat-treatment at 650°C, there is a significant decrease in strength. Heat-treatment also makes the surface of fibers rougher than untreated fibers.


1986 ◽  
Vol 21 (3) ◽  
pp. 344-350 ◽  
Author(s):  
Barry G. Oliver ◽  
Klaus L.E. Kaiser

Abstract The concent rat ions of hexachloroethane (HCE), hexachlorobutadiene (HCBD), pentachlorobenzene (QCB), hexachlorobenzene (HCB) and octachlorostyrene (OCS) in large volume water samples show that the major sources of these chemicals to the St. Clair River are Dow Chemical Company effluents and, to a lesser degree, Sarnia’s Township ditch which drains one of Dow’s waste disposal sites. Tributaries entering the river on both sides of the Canada/United States border contain measurable concentrations of these chemicals indicating low level contamination throughout the area. The degree of water/suspended sediment partitioning of the chemicals (Kp) was studied. Kp values for the individual chemicals changed in a manner consistent with changes in their physical-chemical properties.


2020 ◽  
Vol 20 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Ponnurengam M. Sivakumar ◽  
Matin Islami ◽  
Ali Zarrabi ◽  
Arezoo Khosravi ◽  
Shohreh Peimanfard

Background and objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. Methods and results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.


2021 ◽  
Vol 11 (10) ◽  
pp. 4417
Author(s):  
Veronica Vendramin ◽  
Gaia Spinato ◽  
Simone Vincenzi

Chitosan is a chitin-derived fiber, extracted from the shellfish shells, a by-product of the fish industry, or from fungi grown in bioreactors. In oenology, it is used for the control of Brettanomyces spp., for the prevention of ferric, copper, and protein casse and for clarification. The International Organisation of Vine and Wine established the exclusive utilization of fungal chitosan to avoid the eventuality of allergic reactions. This work focuses on the differences between two chitosan categories, fungal and animal chitosan, characterizing several samples in terms of chitin content and degree of deacetylation. In addition, different acids were used to dissolve chitosans, and their effect on viscosity and on the efficacy in wine clarification were observed. The results demonstrated that even if fungal and animal chitosans shared similar chemical properties (deacetylation degree and chitin content), they showed different viscosity depending on their molecular weight but also on the acid used to dissolve them. A significant difference was discovered on their fining properties, as animal chitosans showed a faster and greater sedimentation compared to the fungal ones, independently from the acid used for their dissolution. This suggests that physical–chemical differences in the molecular structure occur between the two chitosan categories and that this significantly affects their technologic (oenological) properties.


2020 ◽  
Vol 59 (1) ◽  
pp. 441-454
Author(s):  
Carlos A. Martínez-Pérez

AbstractIn the last years, electrospinning has become a technique of intense research to design and fabricate drug delivery systems (DDS), during this time a vast variety of DDS with mainly electrospun polymers and many different active ingredient(s) have been developed, many intrinsic and extrinsic factor have influence in the final system, there are those that can be attributed to the equipment set up and that to the physical-chemical properties of the used materials in the fabrication of DDS. After all, this intense research has generated a great amount of DDS loaded with one or more drugs. In this manuscript a review with the highlights of different kind of systems for drug delivery systems is presented, it includes the basic concepts of electrospinning, types of equipment set up, polymer/drug systems, limitations and challenges that need to be overcome for clinical applications.


2021 ◽  
Vol 494 ◽  
pp. 119334
Author(s):  
Vinicius Evangelista Silva ◽  
Thiago Assis Rodrigues Nogueira ◽  
Cassio Hamilton Abreu-Junior ◽  
Arun Dilipkumar Jani ◽  
Salatier Buzetti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document