scholarly journals THERMOPHILIC ORGANOTROPHIC BACTERIA OF THE GENUS MEIOTHERMUS IN ALKALINE HYDROTHERMS OF PRIBAIKALYE (BURYATIA)

2015 ◽  
Vol 4 (2) ◽  
pp. 30-32
Author(s):  
Valentina Grygoryevna Budagaeva ◽  
Darima Dondokovna Barkhutova

Aerobic, facultative anaerobic hydrolytic bacteria are widespread in the sediments and microbial mats of alkaline hot springs in Baikal region (Buryatia). Typical representatives of hydrolytic bacteria are alkalotermophylic bacilli which are capable of utilizing organic matter in alkaline hot spring waters. Two pure cultures of bacteria growing on acetate, pyruvate and soetone were isolated from the microbial mat of Baikal region thermal springs (Buryatia). These strains were non-sporeforming straight or curved rods that morphologically similar to the representatives of the genus Meiothermus. Bacteria on agar medium formed small smooth pink colonies. Ecophysiological properties of isolates are studied (with respect to temperature and pH). Optimal growth temperature of culture Um-14-2-1 was 450C, the temperature range was 35-600C. The temperature range of strain Al-14-3 was 30-60C, with an optimum 50 C. The pH range of strain Um-14-2-1 is 6.5 to 9.5, the optimum of 8.0. The pH range of strain Al-14-3 is 6.5 to 9.5, the optimum of 8.5. Two thermophilic heterotrophic bacteria are similar to the genus Meiothermus by morphophysiological properties and the ability to thermophile, and are moderate thermophiles.


2021 ◽  
Vol 9 (3) ◽  
pp. 652
Author(s):  
Shigeru Kawai ◽  
Joval N. Martinez ◽  
Mads Lichtenberg ◽  
Erik Trampe ◽  
Michael Kühl ◽  
...  

Chloroflexus aggregans is a metabolically versatile, thermophilic, anoxygenic phototrophic member of the phylum Chloroflexota (formerly Chloroflexi), which can grow photoheterotrophically, photoautotrophically, chemoheterotrophically, and chemoautotrophically. In hot spring-associated microbial mats, C. aggregans co-exists with oxygenic cyanobacteria under dynamic micro-environmental conditions. To elucidate the predominant growth modes of C. aggregans, relative transcription levels of energy metabolism- and CO2 fixation-related genes were studied in Nakabusa Hot Springs microbial mats over a diel cycle and correlated with microscale in situ measurements of O2 and light. Metatranscriptomic analyses indicated two periods with different modes of energy metabolism of C. aggregans: (1) phototrophy around midday and (2) chemotrophy in the early morning hours. During midday, C. aggregans mainly employed photoheterotrophy when the microbial mats were hyperoxic (400–800 µmol L−1 O2). In the early morning hours, relative transcription peaks of genes encoding uptake hydrogenase, key enzymes for carbon fixation, respiratory complexes as well as enzymes for TCA cycle and acetate uptake suggest an aerobic chemomixotrophic lifestyle. This is the first in situ study of the versatile energy metabolism of C. aggregans based on gene transcription patterns. The results provide novel insights into the metabolic flexibility of these filamentous anoxygenic phototrophs that thrive under dynamic environmental conditions.



1999 ◽  
Vol 65 (1) ◽  
pp. 198-205 ◽  
Author(s):  
Akira Hiraishi ◽  
Taichi Umezawa ◽  
Hiroyuki Yamamoto ◽  
Kenji Kato ◽  
Yonosuke Maki

ABSTRACT The respiratory and photosynthetic quinones of microbial mats which occurred in Japanese sulfide-containing neutral-pH hot springs at different temperatures were analyzed by spectrochromatography and mass spectrometry. All of the microbial mats that developed at high temperatures (temperatures above 68°C) were so-called sulfur-turf bacterial mats and produced methionaquinones (MTKs) as the major quinones. A 78°C hot spring sediment had a similar quinone profile.Chloroflexus-mixed mats occurred at temperatures of 61 to 65°C and contained menaquinone 10 (MK-10) as the major component together with significant amounts of either MTKs or plastoquinone 9 (PQ-9). The sunlight-exposed biomats growing at temperatures of 45 to 56°C were all cyanobacterial mats, in which the photosynthetic quinones (PQ-9 and phylloquinone) predominated and MK-10 was the next most abundant component in most cases. Ubiquinones (UQs) were not found or were detected in only small amounts in the biomats growing at temperatures of 50°C and above, whereas the majority of the quinones of a purple photosynthetic mat growing at 34°C were UQs. A numerical analysis of the quinone profiles was performed by using the following three parameters: dissimilarity index (D), microbial divergence index (MDq ), and bioenergetic divergence index (BDq ). A D matrix tree analysis showed that the hot spring mats consisting of the sulfur-turf bacteria, Chloroflexus spp., cyanobacteria, and purple phototrophic bacteria formed distinct clusters. Analyses ofMDq and BDq values indicated that the microbial diversity of hot spring mats decreased as the temperature of the environment increased. The changes in quinone profiles and physiological types of microbial mats in hot springs with thermal gradients are discussed from evolutionary viewpoints.



2020 ◽  
Vol 86 (7) ◽  
Author(s):  
Laurey Steinke ◽  
Gordon W. Slysz ◽  
Mary S. Lipton ◽  
Christian Klatt ◽  
James J. Moran ◽  
...  

ABSTRACT The upper green layer of the chlorophototrophic microbial mats associated with the alkaline siliceous hot springs of Yellowstone National Park consists of oxygenic cyanobacteria (Synechococcus spp.), anoxygenic Roseiflexus spp., and several other anoxygenic chlorophototrophs. Synechococcus spp. are believed to be the main fixers of inorganic carbon (Ci), but some evidence suggests that Roseiflexus spp. also contribute to inorganic carbon fixation during low-light, anoxic morning periods. Contributions of other phototrophic taxa have not been investigated. In order to follow the pathway of Ci incorporation into different taxa, mat samples were incubated with [13C]bicarbonate for 3 h during the early-morning, low-light anoxic period. Extracted proteins were treated with trypsin and analyzed by mass spectrometry, leading to peptide identifications and peptide isotopic profile signatures containing evidence of 13C label incorporation. A total of 25,483 peptides, corresponding to 7,221 proteins, were identified from spectral features and associated with mat taxa by comparison to metagenomic assembly sequences. A total of 1,417 peptides, derived from 720 proteins, were detectably labeled with 13C. Most 13C-labeled peptides were derived from proteins of Synechococcus spp. and Roseiflexus spp. Chaperones and proteins of carbohydrate metabolism were most abundantly labeled. Proteins involved in photosynthesis, Ci fixation, and N2 fixation were also labeled in Synechococcus spp. Importantly, most proteins of the 3-hydroxypropionate bi-cycle for Ci fixation in Roseiflexus spp. were labeled, establishing that members of this taxocene contribute to Ci fixation. Other taxa showed much lower [13C]bicarbonate incorporation. IMPORTANCE Yellowstone hot spring mats have been studied as natural models for understanding microbial community ecology and as modern analogs of stromatolites, the earliest community fossils on Earth. Stable-isotope probing of proteins (Pro-SIP) permitted short-term interrogation of the taxa that are involved in the important process of light-driven Ci fixation in this highly active community and will be useful in linking other metabolic processes to mat taxa. Here, evidence is presented that Roseiflexus spp., which use the 3-hydroxypropionate bi-cycle, are active in Ci fixation. Because this pathway imparts a lower degree of selection of isotopically heavy Ci than does the Calvin-Benson-Bassham cycle, the results suggest a mechanism to explain why the natural abundance of 13C in mat biomass is greater than expected if only the latter pathway were involved. Understanding how mat community members influence the 13C/12C ratios of mat biomass will help geochemists interpret the 13C/12C ratios of organic carbon in the fossil record.



2000 ◽  
Vol 66 (7) ◽  
pp. 2835-2841 ◽  
Author(s):  
Sigurlaug Skirnisdottir ◽  
Gudmundur O. Hreggvidsson ◽  
Sigridur Hj�rleifsdottir ◽  
Viggo T. Marteinsson ◽  
Solveig K. Petursdottir ◽  
...  

ABSTRACT In solfataric fields in southwestern Iceland, neutral and sulfide-rich hot springs are characterized by thick bacterial mats at 60 to 80�C that are white or yellow from precipitated sulfur (sulfur mats). In low-sulfide hot springs in the same area, grey or pink streamers are formed at 80 to 90�C, and a Chloroflexusmat is formed at 65 to 70�C. We have studied the microbial diversity of one sulfur mat (high-sulfide) hot spring and oneChloroflexus mat (low-sulfide) hot spring by cloning and sequencing of small-subunit rRNA genes obtained by PCR amplification from mat DNA. Using 98% sequence identity as a cutoff value, a total of 14 bacterial operational taxonomic units (OTUs) and 5 archaeal OTUs were detected in the sulfur mat; 18 bacterial OTUs were detected in theChloroflexus mat. Although representatives of novel divisions were found, the majority of the sequences were >95% related to currently known sequences. The molecular diversity analysis showed that Chloroflexus was the dominant mat organism in the low-sulfide spring (1 mg liter−1) below 70�C, whereasAquificales were dominant in the high-sulfide spring (12 mg liter−1) at the same temperature. Comparison of the present data to published data indicated that there is a relationship between mat type and composition of Aquificales on the one hand and temperature and sulfide concentration on the other hand.



2020 ◽  
Author(s):  
Jia Liu ◽  
Wensi Zhang ◽  
Fang Yuan ◽  
Yongxin Pan ◽  
Wei Lin

<p>Magnetotactic bacteria (MTB) biomineralize intracellular magnetic nanocrystals and can use the geomagnetic field to navigate towards specific microenvironments in water columns and sediments. MTB are a model system to study the mechanisms of microbial magnetoreception and biomineralization. The majority of MTB identified so far are from environments with pH values near neutral and at the normal range of temperature. MTB from extreme environments, such as hot springs, has not been observed and described until recently. However, our knowledge on extremophilic MTB is still very limited. Here we report the identification and characterization of various MTB in Tengchong hot springs, China, with a temperature range of 41.3-69.5 °C and a pH range of 7.1-8.6. Although MTB are diverse in cell morphology, they all form bullet-shaped magnetite magnetosomes organized into either one chain or multiple bundles of chains. Through genome-resolved metagenomics, we have reconstructed five genome bins of hot spring MTB that are all affiliated within the <em>Nitrspirae</em> phylum. Genomic analyses and metabolic reconstructions are now in progress. These results will help to better understand the extremophilic MTB and may shed new lights on the origin and evolution of microbial magnetoreception and biomineralization.</p>



2003 ◽  
Vol 40 (11) ◽  
pp. 1725-1738 ◽  
Author(s):  
Kazue Tazaki ◽  
Islam ABM Rafiqul ◽  
Kaori Nagai ◽  
Takayuki Kurihara

Bacterial FeAs2 mineralization was found in the reddish-brown microbial mats that have grown on the walls of the drainage systems of Masutomi Hot Springs, Yamanashi Prefecture, Japan. The reddish-brown microbial mats, which are mainly composed of bacilliform and coccoid types of bacteria, have been analyzed and observed by microtechniques to interpret the bacterial biomineralization and search for the clues to bioremediation. These bacteria accumulate Fe and As along with other trace elements to form various biominerals. The electron diffraction (ED) pattern of the bacterial capsule identified lollingite (FeAs2) and calcite (CaCO3) on the surface of the cell. Based on Fourier-transform infrared absorbance spectroscopy (FT–IR) analysis, the presence of organic components such as C—H, C=O, CNH, –COOH, and N—H in the reddish-brown microbial mats emphasized the metal-binding potential of the bacteria. X-ray diffraction (XRD) data showed the poorly crystalline character of the precipitates, which consist mainly of hydrous iron oxides (2.7 Å (1 Å = 0.1 nm)). The FeAs2 biominerals form by adsorption onto the bacterial cell wall, as demonstrated by microscopic observations and spectroscopic analysis. These showed that bacteria in the reddish-brown microbial mats have the ability to form biominerals with heavy metals and toxic metalloids like As. Particularly significant in hot spring environments is the role of symbiotic and toxic-resistant bacteria, which have the ability to adapt to high As concentrations. Bacterial FeAs2 mineralization might also be considered a mechanism by which toxic As is removed from the aquatic ecosystem. The results provide evidence for detoxification processes and offer clues to possible methods of bioremediation.



1998 ◽  
Vol 64 (5) ◽  
pp. 1680-1687 ◽  
Author(s):  
Hiroyuki Yamamoto ◽  
Akira Hiraishi ◽  
Kenji Kato ◽  
Hiroshi X. Chiura ◽  
Yonosuke Maki ◽  
...  

ABSTRACT So-called sulfur-turf microbial mats, which are macroscopic white filaments or bundles consisting of large sausage-shaped bacteria and elemental sulfur particles, occur in sulfide-containing hot springs in Japan. However, no thermophiles from sulfur-turf mats have yet been isolated as cultivable strains. This study was undertaken to determine the phylogenetic positions of the sausage-shaped bacteria in sulfur-turf mats by direct cloning and sequencing of 16S rRNA genes amplified from the bulk DNAs of the mats. Common clones with 16S rDNA sequences with similarity levels of 94.8 to 99% were isolated from sulfur-turf mat samples from two geographically remote hot springs. Phylogenetic analysis showed that the phylotypes of the common clones formed a major cluster with members of theAquifex-Hydrogenobacter complex, which represents the most deeply branching lineage of the domain bacteria. Furthermore, the bacteria of the sulfur-turf mat phylotypes formed a clade distinguishable from that of other members of theAquifex-Hydrogenobacter complex at the order or subclass level. In situ hybridization with clone-specific probes for 16S rRNA revealed that the common phylotype of sulfur-turf mat bacteria is that of the predominant sausage-shaped bacteria.



2008 ◽  
Vol 74 (20) ◽  
pp. 6417-6426 ◽  
Author(s):  
Chuanlun L. Zhang ◽  
Qi Ye ◽  
Zhiyong Huang ◽  
WenJun Li ◽  
Jinquan Chen ◽  
...  

ABSTRACT Despite the ubiquity of ammonium in geothermal environments and the thermodynamic favorability of aerobic ammonia oxidation, thermophilic ammonia-oxidizing microorganisms belonging to the crenarchaeota kingdom have only recently been described. In this study, we analyzed microbial mats and surface sediments from 21 hot spring samples (pH 3.4 to 9.0; temperature, 41 to 86°C) from the United States, China, and Russia and obtained 846 putative archaeal ammonia monooxygenase large-subunit (amoA) gene and transcript sequences, representing a total of 41 amoA operational taxonomic units (OTUs) at 2% identity. The amoA gene sequences were highly diverse, yet they clustered within two major clades of archaeal amoA sequences known from water columns, sediments, and soils: clusters A and B. Eighty-four percent (711/846) of the sequences belonged to cluster A, which is typically found in water columns and sediments, whereas 16% (135/846) belonged to cluster B, which is typically found in soils and sediments. Although a few amoA OTUs were present in several geothermal regions, most were specific to a single region. In addition, cluster A amoA genes formed geographic groups, while cluster B sequences did not group geographically. With the exception of only one hot spring, principal-component analysis and UPGMA (unweighted-pair group method using average linkages) based on the UniFrac metric derived from cluster A grouped the springs by location, regardless of temperature or bulk water pH, suggesting that geography may play a role in structuring communities of putative ammonia-oxidizing archaea (AOA). The amoA genes were distinct from those of low-temperature environments; in particular, pair-wise comparisons between hot spring amoA genes and those from sympatric soils showed less than 85% sequence identity, underscoring the distinctness of hot spring archaeal communities from those of the surrounding soil system. Reverse transcription-PCR showed that amoA genes were transcribed in situ in one spring and the transcripts were closely related to the amoA genes amplified from the same spring. Our study demonstrates the global occurrence of putative archaeal amoA genes in a wide variety of terrestrial hot springs and suggests that geography may play an important role in selecting different assemblages of AOA.



2006 ◽  
Vol 56 (5) ◽  
pp. 965-971 ◽  
Author(s):  
Thomas D. Niederberger ◽  
Dorothee K. Götz ◽  
Ian R. McDonald ◽  
Ron S. Ronimus ◽  
Hugh W. Morgan

Consortia containing a novel coccus-shaped, anaerobic heterotroph together with Pyrobaculum rods were cultivated from geothermal environments in New Zealand. Pure cultures of the cocci were only obtained from one such consortium, despite extensive attempts. Cells of this strain (AQ1.S1T) were regular to irregular cocci in morphology and occasionally formed large aggregates, especially when utilizing polysaccharides such as konjac glucomannan as a carbon source. Strain AQ1.S1T is a hyperthermophile, with an optimal temperature for growth between 92 and 95 °C (range 85–98 °C), and a moderate acidophile, with optimal growth occurring at pH 6.4 (range 5.4–7.0). Growth was inhibited by the addition of sulphur and NaCl (optimal growth occurred without addition of NaCl) and an electron acceptor was not required. Strain AQ1.S1T utilized starch, trypticase peptone, lactose, glucose, konjac glucomannan, mannose, galactose, maltose, glycogen and β-cyclodextrin as carbon sources. The G+C content was 52.9 mol%. Based on 16S rRNA gene sequence analysis and physiological features it is proposed that isolate AQ1.S1T (=DSM 17230T=JCM 13409T) represents the type strain of a novel species of a new genus within the Crenarchaeota, Ignisphaera aggregans gen. nov., sp. nov.



2021 ◽  
Author(s):  
Anirbid Sircar ◽  
Kriti Yadav ◽  
Namrata Bist ◽  
Hemangi Gaurangbhai Oza

Abstract Geothermal waters are extensively useful for various purposes such as in industrial plants, societal benefits, irrigation, and domestic consumptions. However, its physiochemical characterization is very important before using it for any rationale. The main objective of this paper is to identify the hydro-chemistry of geothermal water which is placed in southern part of Gujarat such as Unai hot springs and Saputara geothermal springs, and west coast geothermal province (WCGP) like Tural-Rajwadi group of hot springs. The standard methods were used to carry out the analysis of geothermal water. Piper, Stiff, Gibbs, Extended Durov, and Wilcox diagrams have been plotted to categorize water samples in facies. Spatial distribution curves have also been plotted for geothermal regions of Gujarat and Maharashtra. The geochemistry of groundwater is influenced by the presence of most important ions like Na+, Ca2+, Mg2+, K+, Cl-, HCO3-, and SO42-. Geothermal spring of Unai contains high TDS concentration around 1000 mg/l thus it cannot be used for drinking purposes but it can be utilized for domestic, balneology, and industrial purposes. However, after desalination this water can be utilized for drinking purposes. In Tural-Rajwadi hot springs TDS concentration was > 900 mg/l and pH range was between7-8 hence it can be used for domestic and industrial purposes. The temperature range of Tural-Rajwadi geothermal hot spring is 55-65°C which is very useful for milk pasteurization, industrial operations, space heating, balneology facilities like greenhouses and aquaculture ponds, and domestic purposes.



Sign in / Sign up

Export Citation Format

Share Document