On some microearthquakes near Tarbela reservoir during three low water stands

1997 ◽  
Vol 87 (1) ◽  
pp. 265-271
Author(s):  
Kalpna ◽  
R. Chander

Abstract Detailed 3D stress analyses with a simulated model of Tarbela reservoir indicate that most nearby seismogenic faults inferred from observations of preimpoundment seismicity in the region should be stabilized even when the reservoir has low water levels during dry seasons. We hypothesize that the hypocenters of some microearthquakes occurring close to the reservoir during dry seasons of 1977, 1980, and 1981 were located on those of the above faults that are destabilized by accumulation of broadly north-south horizontal compressive stresses of plate tectonic origin. An order of magnitude analysis shows that the rate of accumulation of these stresses may be sufficiently rapid to overcome the stability imparted to the seismogenic faults by the Tarbela reservoir.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Dianyu Yu ◽  
Yan Chen ◽  
Xing Chen ◽  
Yunyan Huang ◽  
Liqi Wang ◽  
...  

Abstract This research focuses on the use of protein-polyphenol complex and protein-polyphenol: polysaccharide complexes to prepare oleogels through an emulsion-templated approach. Electrolysis soy protein isolate (ESPI) could be effectively adsorbed on the surface of a single-layer emulsion to increase the particle size. The order of the negative charges of the emulsion after adding polysaccharides was xanthan gum (XG)> pectin> carboxymethyl cellulose (CMC). Rheological behavior showed that the stability of the double-layer emulsions increased, and the viscoelasticity increased around one order of magnitude with the addition of polysaccharides. The oil binding capacity (OBC) of the oleogel prepared by adding polysaccharides increased to more than 97%. The peroxide value (PV) and anisidine value (AV) of XG oleogel were the minimum values in all samples. The AV and POV were within the regulatory limits of China after storage for 21 days. This provides a reference to design of ESPI-based oleogel for different applications.


2017 ◽  
Vol 23 (1) ◽  
pp. 15-27
Author(s):  
Chung-Won LEE ◽  
Yong-Seong KIM ◽  
Sung-Yong PARK ◽  
Dong-Gyun KIM ◽  
Gunn HEO

Centrifugal model testing has been widely used to study the stability of levees. However, there have been a limited number of physical studies on levees where the velocity of increasing water levels was considered. To investigate the behavior characteristics of reservoir levees with different velocities of increasing water levels, centrifugal model tests and seepage-deformation coupled analyses were conducted. Through this study, it was confirmed that increasing water levels at higher velocities induces dramatic increases in the displacement, plastic volumetric strain and risk of hydraulic fracturing occurring in the core of the levee. Hence, real-time monitoring of the displacement and the pore water pres­sure of a levee is important to ensure levee stability.


2021 ◽  
Author(s):  
Fernando Jaramillo ◽  
Dan Liu ◽  
Saeid Aminjafari ◽  
Xuan Wang

<p>Hydrological connectivity is a critical determinant of wetland functions and ecosystems by controlling the movement of biogeochemical elements within wetlands and the flow of water between their hydrological units. Hydrological barriers exist when this connectivity is impaired, either by man-made infrastructure, agriculture developments, or naturally restricted by soil and ground composition. Determining hydrological barriers in wetlands is challenging due to the costs of high-resolution and large-scale monitoring, but radar observations can become a useful tool for such task. We here use an Interferometric Synthetic Aperture Radar (InSAR) to identify hydrological barriers in several iconic wetlands worldwide, with particular focus on the Baiyangdian wetland system in Northern China. For the first, we use Sentinel 1A and 1B data covering the period 2016-2019, while for the rest we rely on ALOS PALSAR data. We calculated profiles of water level change across hydrological transects showing high coherence and visualized them in maps. For instance, in the case of the Baiyangdian wetland, we find that of the 70 transects studied, 11% of all transects are permanently disconnected by hydrological barriers across all interferograms and 58% of the transects are conditionally disconnected. The occurrence of hydrological barriers varies between wetlands, with permanent barriers more related to ditches, infrastructure and the specific wetland landscape, and conditional barriers more to low water levels during dry seasons. This study highlights the potential of the application of wetland InSAR to determine hydrological barriers for wetland management and restoration.</p>


2020 ◽  
Vol 492 (3) ◽  
pp. 3107-3127 ◽  
Author(s):  
Adrian B Lucy ◽  
J L Sokoloski ◽  
U Munari ◽  
Nirupam Roy ◽  
N Paul M Kuin ◽  
...  

ABSTRACT How are accretion discs affected by their outflows? To address this question for white dwarfs accreting from cool giants, we performed optical, radio, X-ray, and ultraviolet observations of the outflow-driving symbiotic star MWC 560 (≡V694 Mon) during its 2016 optical high state. We tracked multi-wavelength changes that signalled an abrupt increase in outflow power at the initiation of a months-long outflow fast state, just as the optical flux peaked: (1) an abrupt doubling of Balmer absorption velocities; (2) the onset of a 20 μJy per month increase in radio flux; and (3) an order-of-magnitude increase in soft X-ray flux. Juxtaposing to prior X-ray observations and their coeval optical spectra, we infer that both high-velocity and low-velocity optical outflow components must be simultaneously present to yield a large soft X-ray flux, which may originate in shocks where these fast and slow absorbers collide. Our optical and ultraviolet spectra indicate that the broad absorption-line gas was fast, stable, and dense (≳106.5  cm−3) throughout the 2016 outflow fast state, steadily feeding a lower density (≲105.5 cm−3) region of radio-emitting gas. Persistent optical and ultraviolet flickering indicate that the accretion disc remained intact. The stability of these properties in 2016 contrasts to their instability during MWC 560’s 1990 outburst, even though the disc reached a similar accretion rate. We propose that the self-regulatory effect of a steady fast outflow from the disc in 2016 prevented a catastrophic ejection of the inner disc. This behaviour in a symbiotic binary resembles disc/outflow relationships governing accretion state changes in X-ray binaries.


Molecules ◽  
2019 ◽  
Vol 24 (16) ◽  
pp. 2864 ◽  
Author(s):  
Frederico G. Alabarse ◽  
Boby Joseph ◽  
Andrea Lausi ◽  
Julien Haines

The incorporation of guest species in zeolites has been found to strongly modify their mechanical behavior and their stability with respect to amorphization at high pressure (HP). Here we report the strong effect of H2O on the pressure-induced amorphization (PIA) in hydrated AlPO4-17. The material was investigated in-situ at HP by synchrotron X-ray powder diffraction in diamond anvil cells by using non- and penetrating pressure transmitting media (PTM), respectively, silicone oil and H2O. Surprisingly, in non-penetrating PTM, its structural response to pressure was similar to its anhydrous phase at lower pressures up to ~1.4 GPa, when the amorphization was observed to start. Compression of the structure of AlPO4-17 is reduced by an order of magnitude when the material is compressed in H2O, in which amorphization begins in a similar pressure range as in non-penetrating PTM. The complete and irreversible amorphization was observed at ~9.0 and ~18.7 GPa, respectively, in non- and penetrating PTM. The present results show that the insertion of guest species can be used to strongly modify the stability of microporous material with respect to PIA, by up to an order of magnitude.


1953 ◽  
Vol 167 (1) ◽  
pp. 319-339
Author(s):  
M. S. Frenkel

Requirements for stability are formulated mathematically and, through the “transformatory operations of mathematics”, yield a series of “stability equations” of ascending order which are generally applicable, for example to control mechanisms, electronics†, nuclear physics, etc. From these stability equations, the equation of the stable characteristic curve of a governor, and the differential equations of the oscillations of a governor-engine system, are derived. It emerges that the first part of the new oscillatory equation is identical with the whole of the differential equation in the literature to date (unchanged since Maxwell 1868)‡, while the important second part, which consists of terms of the same order of magnitude as the first part and which is the only one containing the equation of the stable characteristic curve, is lacking in literature. The stability equations classify all possible constructions of variable-speed governor according to “order of stability”, which signifies important operating properties. This classification accounts for the known shortcomings of conventional types. The stability equations, combined with the mathematical formulation of practical requirements (speed-adjustment with only one actuating motion, etc.), lead to new basic types of variable-speed governor, with complete systems of design equations. In addition to determining all unknown dimensions, this set of equations is important because it derives constructions of which the complexity increases with order of stability and, furthermore, a simple construction which provides any required high order of stability with the minimum number of adjustable components.


2011 ◽  
Vol 672 ◽  
pp. 5-32 ◽  
Author(s):  
OUTI TAMMISOLA ◽  
ATSUSHI SASAKI ◽  
FREDRIK LUNDELL ◽  
MASAHARU MATSUBARA ◽  
L. DANIEL SÖDERBERG

The stability of a plane liquid sheet is studied experimentally and theoretically, with an emphasis on the effect of the surrounding gas. Co-blowing with a gas velocity of the same order of magnitude as the liquid velocity is studied, in order to quantify its effect on the stability of the sheet. Experimental results are obtained for a water sheet in air at Reynolds number Rel = 3000 and Weber number We = 300, based on the half-thickness of the sheet at the inlet, water mean velocity at the inlet, the surface tension between water and air and water density and viscosity. The sheet is excited with different frequencies at the inlet and the growth of the waves in the streamwise direction is measured. The growth rate curves of the disturbances for all air flow velocities under study are found to be within 20% of the values obtained from a local spatial stability analysis, where water and air viscosities are taken into account, while previous results from literature assuming inviscid air overpredict the most unstable wavelength with a factor 3 and the growth rate with a factor 2. The effect of the air flow on the stability of the sheet is scrutinized numerically and it is concluded that the predicted disturbance growth scales with (i) the absolute velocity difference between water and air (inviscid effect) and (ii) the square root of the shear from air on the water surface (viscous effect).


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Arun Raj ◽  
Rajesh Sharma Sivasubramony ◽  
Manu Yadav ◽  
Sanoop Thekkut ◽  
Gurvinder Singh Khinda ◽  
...  

Abstract Conducting traces on a flexible substrate often have to survive significant and repeated deformation, making their fatigue resistance and the stability of it during long-term storage and use a potential concern. The question of stability is obvious in the case of, for example, screen or ink jet-printed traces where the organic matrix remains a critical part of the structure. We show it also to be important for nano-Ag traces that are sintered to ensure metallic bonding between the particles while eliminating most of the organics. We also show conventional accelerated aging tests to be potentially confusing or misleading for such traces, depending among other on practical limitations on sintering conditions. Examples are presented of how the fatigue resistance of application relevant aerosol jet-printed nano-Ag traces may degrade relatively rapidly at moderate temperatures. Even after “optimized” sintering at a much higher temperature subsequent aging at 75 °C for only 100 h led to an order of magnitude reduction in the fatigue life in subsequent mild cycling. The rate of degradation is certain to vary with the design and the ink used as well as with sintering conditions, making it important to account for it all in materials selection, process optimization, and assessments of practical life.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1716 ◽  
Author(s):  
Zeeshan Riaz Tarar ◽  
Sajid Rashid Ahmad ◽  
Iftikhar Ahmad ◽  
Shabeh ul Hasson ◽  
Zahid Mahmood Khan ◽  
...  

Setting precise sediment load boundary conditions plays a central role in robust modeling of sedimentation in reservoirs. In the presented study, we modeled sediment transport in Tarbela Reservoir using sediment rating curves (SRC) and wavelet artificial neural networks (WA-ANNs) for setting sediment load boundary conditions in the HEC-RAS 1D numerical model. The reconstruction performance of SRC for finding the missing sediment sampling data was at R2 = 0.655 and NSE = 0.635. The same performance using WA-ANNs was at R2 = 0.771 and NSE = 0.771. As the WA-ANNs have better ability to model non-linear sediment transport behavior in the Upper Indus River, the reconstructed missing suspended sediment load data were more accurate. Therefore, using more accurately-reconstructed sediment load boundary conditions in HEC-RAS, the model was better morphodynamically calibrated with R2 = 0.980 and NSE = 0.979. Using SRC-based sediment load boundary conditions, the HEC-RAS model was calibrated with R2 = 0.959 and NSE = 0.943. Both models validated the delta movement in the Tarbela Reservoir with R2 = 0.968, NSE = 0.959 and R2 = 0.950, NSE = 0.893 using WA-ANN and SRC estimates, respectively. Unlike SRC, WA-ANN-based boundary conditions provided stable simulations in HEC-RAS. In addition, WA-ANN-predicted sediment load also suggested a decrease in supply of sediment significantly to the Tarbela Reservoir in the future due to intra-annual shifting of flows from summer to pre- and post-winter. Therefore, our future predictions also suggested the stability of the sediment delta. As the WA-ANN-based sediment load boundary conditions precisely represented the physics of sediment transport, the modeling concept could very likely be used to study bed level changes in reservoirs/rivers elsewhere in the world.


Sign in / Sign up

Export Citation Format

Share Document