scholarly journals EVALUATION OF THE RADIANT COOLING CEILING PANELS WITH A REVERSIBLE HEAT PUMP

2021 ◽  
Vol 2021 (6) ◽  
pp. 5317-5321
Author(s):  
MIROSLAV RIMAR ◽  
◽  
MARCEL FEDAK ◽  
ANDRII KULIKOV ◽  
OLHA KULIKOVA ◽  
...  

Thermal comfort is one of the basic prerequisites for appropriate operating of the building. Ensuring thermal comfort in the summer means creating suitable thermal conditions in the interior. The present article evaluates the operation of radiant ceiling cooling, which is a suitable alternative for conventional cooling systems. Experimental cooling systems using a reversible heat pump as a source of chilled water were analyzed. The presented results indicate the ability of the system to ensure the required interior temperature under suitable climatic conditions using appropriate time management and sufficient accumulation. The required temperature is 24.51 °C and the deviation does not exceed ± 0.5K.

2013 ◽  
Vol 845 ◽  
pp. 472-476
Author(s):  
Harimi Djamila

In recent years, there has been an increasing interest on energy saving in building sector.Passive cooling is considered the best strategy for improving the indoor thermal conditions and comfortwith lowest cost energy usage. In air-conditioned era, however, many designers have fully forgotten that the main objective of building thermal comfort is not to cool the whole space but rather the resident of the building with the least energy consumption. This investigation is about discussing some of the available passive cooling strategies based on experimental investigations. Results from this study showed that building materialsaffect the indoorair temperature, which in turn willaffect the indoor thermal comfort. Design strategies more suitable under tropical humid climatic conditions were suggested.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 538
Author(s):  
Katarzyna Gładyszewska-Fiedoruk ◽  
Maria Jolanta Sulewska

The thermal sensations of people differ from each other, even if they are in the same thermal conditions. The research was carried out in a didactic teaching room located in the building of the Faculty of Civil and Environmental Engineering in Poland. Tests on the temperature were carried out simultaneously with questionnaire surveys. The purpose of the survey was to define sensations regarding the thermal comfort of people in the same room, in different conditions of internal and external temperatures. In total 333 questionnaires were analyzed. After the discriminant and neural analyses it was found that it is not possible to forecast the thermal comfort assessment in the room based on the analyzed variables: gender, indoor air temperature, external wall radiant temperature, and outdoor air temperature. The thermal comfort assessments of men and women were similar and overlapped. The results of this study confirm that under the same thermal conditions about 85% of respondents assess thermal comfort as good, and about 15% of respondents assess thermal comfort as bad. The test results presented in this article are similar to the results of tests carried out by other authors in other climatic conditions.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3648
Author(s):  
Joanna Ferdyn-Grygierek ◽  
Krzysztof Grygierek ◽  
Anna Gumińska ◽  
Piotr Krawiec ◽  
Adrianna Oćwieja ◽  
...  

The household sector in Poland consumes more than 25% of final energy. At the same time, residents reported dissatisfaction with the thermal conditions during the summer months. This paper details the search for passive and energy-efficient solutions to improve thermal comfort in Polish dwellings. A five-story, multi-family building was selected for this research. Analyses were conducted in apartments located on the top two floors using EnergyPlus (for thermal calculations) and CONTAM (for air exchange calculations) simulation programs for current and future climatic conditions. The stochastic behavior of people when opening windows and automatically controlled systems supplying external air to the building was considered. Airing the apartments by opening windows increased the heating demand but reduced the number of thermal discomfort hours by over 90%. The degree of airing by opening windows depends on residents opening their windows; therefore, a mechanical supply of external air controlled by both internal and external temperatures was proposed and tested.


2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
María Jesús Romero-Lara ◽  
Francisco Comino ◽  
Manuel Ruiz de Adana

Efficient air cooling systems for hot climatic conditions, such as southern Europe, are required. Regenerative indirect evaporative cooler (RIEC) and desiccant regenerative indirect evaporative cooler (DRIEC) could be interesting alternatives to direct expansion conventional systems (DX). The main objective of this work was to evaluate the seasonal performance of three air cooling systems in terms of thermal comfort, ventilation and energy consumption. DRIEC was the recommended system to serve a standard classroom in terms of thermal comfort and RIEC in terms of ventilation and energy consumption.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-23
Author(s):  
Indah Sari Zulfiana

To get good quality learning, a comfortable study room is needed both visually, audally and thermally. Thermal comfort is greatly influenced by the climatic conditions of a region. In areas with high daily air temperature, high humidity and low air velocity, it is difficult to produce thermal comfort with natural air conditioning. Jayapura City is one of the cities in Indonesia with daily air temperature and high humidity and low air velocity. Therefore, adaptive processes are needed to achieve thermal comfort in spaces, including study rooms. Each human's adaptive thermal comfort is different according to local climatic conditions. The purpose of this study was to determine the adaptive thermal comfort of students in naturally ventilated classrooms at the Jayapura University of Science and Technology (USTJ) in the city of Jayapura, Papua, namely students 'neutrality, acceptance and thermal preferences, as well as students' adaptive behavior in achieving thermal comfort. This research was conducted in one of USTJ's classrooms in Jayapura, Papua. Four environmental parameters were measured, namely temperature, humidity, wind speed, and mean radiant temperature (MRT). The data were obtained through filling out a questionnaire to 100 USTJ students during the space measurement. Thermal neutrality data were analyzed using regression analysis using SPSS software, while thermal acceptance and preference and adaptive behavior were analyzed based on the results of the questionnaire answers. The results showed that USTJ students' thermal neutrality was at 29.°C Ta or 29.55°C Top. all students can accept the thermal conditions of the room, but 59% of students choose to want the room to be cooler due to their thermal preferences. The adaptive behavior that is carried out is turning on the fan, picking up objects to be used as a fan, leaving the room and drinking more often.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4436
Author(s):  
María Jesús Romero-Lara ◽  
Francisco Comino ◽  
Manuel Ruiz de Adana

Efficient air-cooling systems for hot climatic conditions, such as Southern Europe, are required in the context of nearly Zero Energy Buildings, nZEB. Innovative air-cooling systems such as regenerative indirect evaporative coolers, RIEC and desiccant regenerative indirect evaporative coolers, DRIEC, can be considered an interesting alternative to direct expansion air-cooling systems, DX. The main aim of the present work was to evaluate the seasonal performance of three air-cooling systems in terms of air quality, thermal comfort and energy consumption in a standard classroom. Several annual energy simulations were carried out to evaluate these indexes for four different climate zones in the Mediterranean area. The simulations were carried out with empirically validated models. The results showed that DRIEC and DX improved by 29.8% and 14.6% over RIEC regarding thermal comfort, for the warmest climatic conditions, Lampedusa and Seville. However, DX showed an energy consumption three and four times higher than DRIEC for these climatic conditions, respectively. RIEC provided the highest percentage of hours with favorable indoor air quality for all climate zones, between 46.3% and 67.5%. Therefore, the air-cooling systems DRIEC and RIEC have a significant potential to reduce energy consumption, achieving the user’s thermal comfort and improving indoor air quality.


2018 ◽  
Vol 10 (10) ◽  
pp. 3483 ◽  
Author(s):  
Artur Nemś ◽  
Magdalena Nemś ◽  
Klaudia Świder

This article presents an analysis of selecting a seasonal heating system for an existing greenhouse. The analyzed object is located in Poland near Wroclaw, where summer flowers are grown. Appropriate thermal conditions must be ensured continuously for four heating months. The primary source of heat in the examined flower greenhouse was a coal-fired furnace. The analysis presented in the article shows a method of thermal balancing the object, determining heat demands in the analyzed period using the experiment plan, and also selecting a new heating system in the form of a heat pump. The analysis of the operation of the heating system was performed for air and ground source heat pumps to determine the profitability of their application in Polish climatic conditions. An economic analysis was also included and the investment impact on pollution emissions was calculated.


The purpose of this work is to assess the thermal comfort of a block-modular building on the construction site. The experimental studies for determining the thermal conditions of the cabins in the winter and the summer time of the city of Zhengzhou was carried out at different locations of the modular house made of sandwich panels for determining the category of living comfort. The variations of air temperature and relative humidity in the cabin were analyzed. The difference between outdoor and indoor air temperatures, as well as the changes in air temperature and heat flux on the internal surface of the different walls of the building by their location relative to the cardinal directions were considered. Reasons for decreasing the comfort in the room and the attenuation of the experimental amplitude of the outdoor temperature fluctuations in the enclosing structure as well as the thermal properties of enclosing structures of the block-modular building under different climatic conditions were studied. It is shown that it is necessary to take into account the reflection of heat inside the premises and their ventilation when designing enclosing structures of mobile buildings. It is revealed that in the winter period for energy saving it is necessary to increase in addition thermal characteristics of the western wall of domestic buildings.


Sign in / Sign up

Export Citation Format

Share Document