scholarly journals THERMAL ASYMMETRY ANALYSIS OF MOTORIZED SPINDLES

2021 ◽  
Vol 2021 (3) ◽  
pp. 4612-4619
Author(s):  
L. Koch ◽  
◽  
N. Steinbock ◽  
G. Krueger ◽  
◽  
...  

This paper presents a method to quantify and reduce thermal asymmetry of motorized spindles. Thermal asymmetry leads to angular and radial deflections at the tool center point. In contrast to simple thermal expansion issues, these effects are harder to compensate. Therefore, the causes of the asymmetries should preferably be evident in the construction phase. This paper introduces a newly developed mathematical formulation to quantify thermal asymmetry. Thermal asymmetry is observed along the longitudinal axis of a motorized spindle. The formulation quantifies thermal asymmetries as a difference of a geometrical centroid and a newly introduced thermal centroid. For this analysis, several motor spindles with different fluid cooling circulation systems were observed. In order to show the legitimacy of the formulation, the spindle’s calculated thermal asymmetries are compared with their respective radial tool center point displacements. The results show that the asymmetries correlate with the displacements. Furthermore, the quantification of the thermal asymmetry actually allows to locate its causes. In motor spindles the asymmetry is mostly caused by the complex fluid circulation system. The spindle with the worst cooling circulation showed a radial displacement of 26,32 µm. Through thermal asymmetry optimization of the circulation’s heat transfer, the displacement could be reduced to 0,66 µm. The developed method is not limited to motorized spindles. It will be investigated further to develop a generally valid formulation.

2013 ◽  
Vol 579-580 ◽  
pp. 568-572
Author(s):  
Da Guo Ma ◽  
Xin Bo Jiang

The structure and composition of the air-cooled high speed motorized spindle for wood-working machine and some features relative to the metal cutting motorized spindle are introduced briefly. Then the main heat sources and heat dissipation mechanism of the air-cooled motorized spindle are thoroughly analyzed, finite element model of the air-cooled motorized spindle is built, the motorized spindles temperature distribution under thermal steady state and the influence of speed are analyzed. The results show that air cooling relative to the water or oil cooling has many advantages and reasonable heat dissipation structure design of air-cooled motorized spindle could meet the requirements of the high-speed motorized spindle for wood-working machine.


Nanoscale ◽  
2021 ◽  
Author(s):  
Allana Lewis ◽  
Ting Chen ◽  
Fraz Saeed Butt ◽  
Xiuming Wei ◽  
Norbert Radacsi ◽  
...  

A novel continuous fluid circulation system was designed and employed for the impregnation seeding and fabrication of zeolitic imidazolate framework (ZIF) crystals on the internal surface of polymeric hollow fibre...


2017 ◽  
Vol 41 (5) ◽  
pp. 787-803 ◽  
Author(s):  
Denghui Li ◽  
Hongrui Cao ◽  
Songtao Xi ◽  
Xiaoman Linand ◽  
Xuefeng Chen

In this paper, an optimization method based on dynamic model and genetic algorithm is proposed for the design of motorized spindle bearing locations. Firstly, the dynamic model of motorized spindles is developed based on the Timoshenko beam model and Jones’ quasi-static bearing model. Then, the developed dynamic model is validated with the hammer response test on a motorized grinding spindle system. Finally, the design optimization method is proposed by combining the dynamic model with genetic algorithm. In order to obtain higher rigidity, the optimal locations of bearings on the spindle are calculated with the genetic algorithm. The results show that the first mode natural frequency (FMNF) of the system increases by 12.38% than the original value after optimization.


2011 ◽  
Vol 291-294 ◽  
pp. 2076-2080 ◽  
Author(s):  
Li Xiu Zhang ◽  
Yu Hou Wu

High speed machining (HSM) technology is used in a broad range of applications to machine ferrous metals and nonmetallic material. The motorized spindle is one of the major elements to keep the machine running at high productivity. In recently years, the requirement of rotational speed and rigidity of motorized spindle is getting higher and higher in order to satisfy the high speed processing. Engineering ceramic is the ideal material for high-speed and high precision electrical spindle due to perfect characteristics of light weight, wear resistance, high temperature, high strength, and so on. So a ceramic motorized spindle is designed for higher speed and rigidity. The shaft and bearing of the motorized spindle are made from ceramic material and other parts are made from metal. Rated power of this electrical spindle is 15Kw; its torque is 14Nm and revolving speed is up to 30,000 rpm as maximum. Motorized spindle is a typical mechatronics product and its dynamic property is very important. The signal of vibration and noise of motorized spindle may display its running status, so the vibration and noise of motorized spindle is an important index in the dynamic performance. This paper monitors the vibration and noise of ceramic motorized spindles using spectral analysis techniques. The effects of rotating speed and lubrication condition on vibration and noise of the ceramic electrical spindle are analyzed. These results are very helpful to the structure optimization and application of the ceramic motorized spindle.


2000 ◽  
Vol 123 (3) ◽  
pp. 494-505 ◽  
Author(s):  
Bernd Bossmanns ◽  
Jay F. Tu

Lack of a more complete understanding of system characteristics, particularly thermal effects, severely limits the reliability of high speed spindles to support manufacturing. High speed spindles are notorious for their sudden catastrophic failures without alarming signs at high speeds due to thermal problems. In this paper, a qualitative power flow model is presented to characterize the power distribution of a high speed motorized spindle. Quantitative heat source models of the built-in motor and the bearings are then developed. These models are verified with a custom-built high performance motorized spindle of 32 KW and a maximum speed of 25,000 rpm (1.5 million DN). Several systematic test procedures are also developed to validate the models.


2013 ◽  
Vol 579-580 ◽  
pp. 530-535 ◽  
Author(s):  
Chao Li ◽  
Ying Xue Yao

The DGZX - 1425 high-speed milling motorized spindle which is made and designed independently by Hao Zhi electrical and mechanical company in Guangzhou China is made as the research object, the method of establishing numerical simulation model for the spindle units dynamic performances is established, and the design of the spindles structure has been verified reasonable. Modal analysis of the spindle has been completed in ANSYS Workbench to get the first six natural frequencies and mode shapes. Harmonic analysis of the spindle is also completed to obtain the dynamic stiffness at the highest speed. Modal test and vibration test of the assembled spindle are also processed, which have verified the accuracy of the finite element method. The paper has provided a theoretical basis for the motorized spindles design, structural optimization and the improvement of the dynamic performances.


2020 ◽  
Vol 10 (6) ◽  
pp. 2197 ◽  
Author(s):  
Hongwei Fan ◽  
Jin Wang ◽  
Sijie Shao ◽  
Minqing Jing ◽  
Heng Liu ◽  
...  

Motorized spindles widely used for high-speed precision machine tools are very sensitive to the mass unbalance of rotors; thus, their balancing problem is always a research hotspot. Although many significant studies were done regarding the theory and application of various rotor balancing technologies for motorized spindles, the particularity of motorized spindles is not carefully considered in the existing balancing approaches. When the rotor unbalance of a motorized spindle occurs in operation, it is subject to both the mass unbalance-induced inertia force and air gap unbalance-induced electromagnetic force, which is an important feature that distinguishes the motorized spindle from a mechanical spindle. This paper describes an investigation into the corrected adaptive balancing approach of a motorized spindle by newly introducing a coefficient representing the removing effect of the air gap unbalance of the motor on the balancing capacity into the balancing formula. The determination of the newly defined coefficient refers to the calculation of electromagnetic force caused by the dynamic air gap eccentricity of motor; thus, much attention is paid to the analytical derivation of the unbalanced magnetic pull (UMP). Finally, a motorized spindle with an electromagnetic ring balancer was developed; then, the balancing tests and vibration signal analysis were done to validate the effectiveness of the newly proposed balancing approach in residual vibration reduction. It can be seen from the test results under different cases that the proposed balancing approach is effective.


Sign in / Sign up

Export Citation Format

Share Document