Dynamic Characteristic Analysis of High-Speed Milling Motorized Spindle Based on ANSYS Workbench

2013 ◽  
Vol 579-580 ◽  
pp. 530-535 ◽  
Author(s):  
Chao Li ◽  
Ying Xue Yao

The DGZX - 1425 high-speed milling motorized spindle which is made and designed independently by Hao Zhi electrical and mechanical company in Guangzhou China is made as the research object, the method of establishing numerical simulation model for the spindle units dynamic performances is established, and the design of the spindles structure has been verified reasonable. Modal analysis of the spindle has been completed in ANSYS Workbench to get the first six natural frequencies and mode shapes. Harmonic analysis of the spindle is also completed to obtain the dynamic stiffness at the highest speed. Modal test and vibration test of the assembled spindle are also processed, which have verified the accuracy of the finite element method. The paper has provided a theoretical basis for the motorized spindles design, structural optimization and the improvement of the dynamic performances.

2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110208
Author(s):  
Yuan Zhang ◽  
Lifeng Wang ◽  
Yaodong Zhang ◽  
Yongde Zhang

The thermal deformation of high-speed motorized spindle will affect its reliability, so fully considering its thermal characteristics is the premise of optimal design. In order to study the thermal characteristics of high-speed motorized spindles, a coupled model of thermal-flow-structure was established. Through experiment and simulation, the thermal characteristics of spiral cooling motorized spindle are studied, and the U-shaped cooled motorized spindle is designed and optimized. The simulation results show that when the diameter of the cooling channel is 7 mm, the temperature of the spiral cooling system is lower than that of the U-shaped cooling system, but the radial thermal deformation is greater than that of the U-shaped cooling system. As the increase of the channel diameter of U-shaped cooling system, the temperature and radial thermal deformation decrease. When the diameter is 10 mm, the temperature and radial thermal deformation are lower than the spiral cooling system. And as the flow rate increases, the temperature and radial thermal deformation gradually decrease, which provides a basis for a reasonable choice of water flow rate. The maximum error between experiment and simulation is 2°C, and the error is small, which verifies the accuracy and lays the foundation for future research.


2013 ◽  
Vol 579-580 ◽  
pp. 568-572
Author(s):  
Da Guo Ma ◽  
Xin Bo Jiang

The structure and composition of the air-cooled high speed motorized spindle for wood-working machine and some features relative to the metal cutting motorized spindle are introduced briefly. Then the main heat sources and heat dissipation mechanism of the air-cooled motorized spindle are thoroughly analyzed, finite element model of the air-cooled motorized spindle is built, the motorized spindles temperature distribution under thermal steady state and the influence of speed are analyzed. The results show that air cooling relative to the water or oil cooling has many advantages and reasonable heat dissipation structure design of air-cooled motorized spindle could meet the requirements of the high-speed motorized spindle for wood-working machine.


Author(s):  
Xiao-an Chen ◽  
Jun-feng Liu ◽  
Ye He ◽  
Peng Zhang ◽  
Wen-tao Shan

With increasing popularity in high-speed machining due to its high efficiency, there is a vital need for more accurate prediction of dynamic behaviors for high-speed motorized spindles. The spindle units integrate tools with built-in motors hence a comprehensive model is required to include the multi-physics coupling property. This article presents an integrated model which consists of four coupled sub-models: state, shaft, bearing, and thermal model. Using the variational principle, a state model for the motor-spindle system is generated, which can describe the running state of the spindle, and provide electrical parameters to study the motor heat generation for thermal model and the unbalanced magnetic force for shaft dynamic model. The thermal model is coupled with the bearing and shaft dynamic model through bearing heat generation and thermal displacement. Thus, the entire model becomes an integrated electro-thermo-mechanical dynamic model. The proposed integrated model is investigated by a solution procedure and validated experimentally, and it shows that the model is capable of accurately predicting the dynamic behaviors of motorized spindles. The coupling relationship among the electrical, thermal, and mechanical behaviors of the system becomes clear from the simulation and experimental results, and some feasible methods to improve the dynamic performances of the system are obtained.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Xiaopeng Wang ◽  
Yuzhu Guo ◽  
Tianning Chen

High speed motorized spindle has become a key functional unit of high speed machine tools and effectively promotes the development of machine tool technology. The development of higher speed and more power puts forward the stricter requirement for the performance of motorized spindle, especially the dynamic performance which affects the machining accuracy, reliability, and production efficiency. To overcome the problems of ineffective loading and dynamic performance measurement of motorized spindle, a noncontact electromagnetic loading device is developed. The cutting load can be simulated by using electromagnetic force. A new method of measuring force by force sensors is presented, and the steady and transient loading force could be measured exactly. After the high speed machine spindle is tested, the frequency response curves of the spindle relative to machine table are collected at 0~12000 rpm; then the relationships between stiffness and speeds as well as between damping ratio and speeds are obtained. The result shows that not only the static and dynamic stiffness but also the damping ratio declined with the increase of speed.


2013 ◽  
Vol 385-386 ◽  
pp. 324-328
Author(s):  
Xiao Hua Song ◽  
Shao Long Wu

This paper describes the inherent characteristics, dynamic response and dynamic stability dynamics of vibration capability that impacts of high-speed electric spindle. Taking the high-speed, high-power electric spindle milling center on as the object of the research, modal analyzing of electric spindle with the finite element software ANSYS Workbench, researching the spindle modes, natural frequencies and critical speed of electric spindle, to get each frequency and vibration type, pointed the affection of what spindle away from the anti-vibration frequency requirements, well before bearing stiffness and damping of the vibration to the spindle system. It provides the necessary basis for further dynamic analysis by modal analysis.


2011 ◽  
Vol 480-481 ◽  
pp. 1511-1515
Author(s):  
Dong Man Yu ◽  
Chang Pei Shang ◽  
Di Wang ◽  
Zhi Hua Gao

Due to high rotation accuracy, high dynamic stiffness, high vibration damping and long life, high-speed spindles supported by hydrodynamic and hydrostatic hybrid bearings are widely applied in the field of high-speed precision machine tools. The basic structure and working principal was detailed introduced, and then demonstrated a series of models and specifications of motorized spindle manufactured by FISCHER company in Switzerland. The finite element model of high-speed motorized spindle was built up and carried out thermal analysis to study the heat generation and heat transfer. With the help of ANSYS finite element software, the temperature field distribution and the temperature rise condition for motorized spindle were analyzed. The result indicates that the front bearing has a higher temperature than that of back bearing. The maximum temperature of inner ring is bigger than that of outer ring.


Author(s):  
Huihui Feng ◽  
Shuyun Jiang

The purpose of this paper is to investigate the dynamic performances of a motorized spindle supported on water-lubricated bearings. A modified transfer matrix method considering both of the translational and tilting dynamic coefficients of the bearings is established. The turbulent Reynolds equation is adopted and numerically solved by the perturbation method and the finite difference method, and the dynamic characteristics of the water-lubricated journal bearings are obtained; the effects of the eccentricity ratio, tilting angle, and the rotational speed on the dynamic coefficients of the water-lubricated journal bearings are analyzed. The critical speed, the dynamic stiffness of spindle nose, and unbalance response of the motorized spindle are investigated. Finally, a comparative study of rotor dynamic behaviors between the 32- and the eight-coefficient bearing models is conducted. The numerical predictions obtained by the 32-coefficient bearing models correlate well with the experimental values available in the literature.


2013 ◽  
Vol 561 ◽  
pp. 496-500
Author(s):  
De Gong Chang ◽  
Hong Yun Dou ◽  
Fu Qin Yang ◽  
Rong Zong

According to the working principle and structural characteristics of cylinder mechanism, the simplified model is built by the Pro/E software. Then we carry on the modal analysis for cylinder mechanism combined with ANSYS Workbench [1], and obtain the natural frequency and mode shapes of all steps. It provides the basis for optimization design and safety evaluation of cylinder mechanism. Finally, we study the influence of bearing stiffness on the critical speed, which provides the basis for the research of high-speed cylinder.


2011 ◽  
Vol 291-294 ◽  
pp. 2076-2080 ◽  
Author(s):  
Li Xiu Zhang ◽  
Yu Hou Wu

High speed machining (HSM) technology is used in a broad range of applications to machine ferrous metals and nonmetallic material. The motorized spindle is one of the major elements to keep the machine running at high productivity. In recently years, the requirement of rotational speed and rigidity of motorized spindle is getting higher and higher in order to satisfy the high speed processing. Engineering ceramic is the ideal material for high-speed and high precision electrical spindle due to perfect characteristics of light weight, wear resistance, high temperature, high strength, and so on. So a ceramic motorized spindle is designed for higher speed and rigidity. The shaft and bearing of the motorized spindle are made from ceramic material and other parts are made from metal. Rated power of this electrical spindle is 15Kw; its torque is 14Nm and revolving speed is up to 30,000 rpm as maximum. Motorized spindle is a typical mechatronics product and its dynamic property is very important. The signal of vibration and noise of motorized spindle may display its running status, so the vibration and noise of motorized spindle is an important index in the dynamic performance. This paper monitors the vibration and noise of ceramic motorized spindles using spectral analysis techniques. The effects of rotating speed and lubrication condition on vibration and noise of the ceramic electrical spindle are analyzed. These results are very helpful to the structure optimization and application of the ceramic motorized spindle.


Sign in / Sign up

Export Citation Format

Share Document