scholarly journals Architecture based in open source hardware and software for designing a real time vehicle tracking device

2018 ◽  
Vol 16 (44) ◽  
pp. 49-61 ◽  
Author(s):  
Diony Roely Castillo Rodríguez ◽  
Alain Sebastián Martínez Laguardia ◽  
Alberto Gómez Abreu

The usage of real-time tracking systems for vehicles has demonstrated to be a viable and economical option, entailing in more control and management of the fleet, plus the reduction of the logistics costs of companies using them. Since 2006 in Cuba, there is a fleet control and management system employed by almost all the companies, which hire a variant of the service in a differed manner; i.e., the data are not processed in real-time. In this research paper, we propose the design of a device based only on open source hardware/software components allowing the real-time vehicle tracking. Our proposal is suitable for the conditions of the country where it was developed (Cuba), presenting high functionality than other proposals. For the design, we employed an Arduino UNO controller board, an Adafruit FONA808 GPS/GSM module, and other accessories. As per the performed experiments, the proposed hardware/software architecture complies with the operation, configuration, and security requirements to achieve a viable product from the economical and environmental approaches.  

2019 ◽  
Author(s):  
Lars Larson ◽  
Elad Levintal ◽  
Jose Manuel Lopez Alcala ◽  
Dr. Lloyd Nackley ◽  
Dr. John Selker ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 367 ◽  
Author(s):  
Massimo Merenda ◽  
Demetrio Iero ◽  
Giovanni Pangallo ◽  
Paolo Falduto ◽  
Giovanna Adinolfi ◽  
...  

This paper presents the design and hardware implementation of open-source hardware dedicated to smart converter systems development. Smart converters are simple or interleaved converters. They are equipped with controllers that are able to online impedance match for the maximum power transfer. These conversion systems are particularly feasible for photovoltaic and all renewable energies systems working in continuous changing operating conditions. Smart converters represent promising solutions in recent energetic scenarios, in fact their application is deepening and widening. In this context, the availability of a hardware platform could represent a useful tool. The platform was conceived and released as an open hardware instrument for academy and industry to benefit from the improvements brought by the researchers’ community. The usage of a novel, open-source platform would allow many developers to design smart converters, focusing on algorithms instead of electronics, which could result in a better overall development ecosystem and rapid growth in the number of smart converter applications. The platform itself is proposed as a benchmark in the development and testing of different maximum power point tracking algorithms. The designed system is capable of accurate code implementations, allowing the testing of different current and voltage-controlled algorithms for different renewable energies systems. The circuit features a bi-directional radio frequency communication channel that enables real-time reading of measurements and parameters, and remote modification of both algorithm types and settings. The proposed system was developed and successfully tested in laboratory with a solar module simulator and with real photovoltaic generators. Experimental results indicate state-of-art performances as a converter, while enhanced smart features pave the way to system-level management, real-time diagnostics, and on-the-flight parameters change. Furthermore, the deployment feasibility allows different combinations and arrangements of several energy sources, converters (both single and multi-converters), and modulation strategies. To our knowledge, this project remains the only open-source hardware smart converter platform used for educational, research, and industrial purposes so far.


2020 ◽  
Vol 2 (4) ◽  
pp. 21-30
Author(s):  
Ali Mustafa ◽  
Mohammed I. Aal-Nouman ◽  
Osama A. Awad

 The need for vehicle tracking system in real time is growth continues due to increase the cases of theft. This type of system in real time needs to transmit large data with huge number of HTTP request to the server to keep tracking and monitoring in real time, thus causes spend extremely high cost every month for transportation the information on tracking vehicles to server therefor the needs for reducing the number of transportation and data size that transmits in each HTTP request to save expenses. This paper designed and implement an integrated vehicle tracking system in real time to track vehicle anywhere and anytime. This system is divided into two parts: vehicle tracking part and monitoring part. Tracking part is represented by installation the electronic devices in the vehicle using modern Global Positioning System (GPS), microcontroller Arduino UNO R3 and SIM800L GSM/GPRS modem. GPS is determined location of the vehicle via received coordinates from satellites such as latitude and latitude with accuracy ranging approximately 2.5 meters; the coordinates faked to add a type of protection to information on vehicles without effecting on characterizing real time tracking before sending it via a General Packet Radio service (GPRS). The monitoring part is in the cloud and will receive the coordinates and displays it on a map in a web page. The main contribution of this system is it reduced data size that sent from in-vehicle device via selected only necessary data for tracking vehicle from NEMA sentences of GPS and reduced number of HTTP request that sent to remote server via constrain the transmission of information with the movement of vehicles, since when vehicle moved the coordinates each 10s and did not send anything when the vehicle stopped thus will reduce the cost of expenses every month. This system can be utilized to track and monitoring the vehicles of large universities, companies, organization and also can be used in army vehicles and police vehicles.      


2018 ◽  
Author(s):  
Alessio Paolo Buccino ◽  
Mikkel Elle Lepperød ◽  
Svenn-Arne Dragly ◽  
Philipp Häfliger ◽  
Marianne Fyhn ◽  
...  

AbstractObjectiveA major goal in systems neuroscience is to determine the causal relationship between neural activity and behavior. To this end, methods that combine monitoring neural activity, behavioral tracking, and targeted manipulation of neurons in closed-loop are powerful tools. However, commercial systems that allow these types of experiments are usually expensive and rely on non-standardized data formats and proprietary software which may hinder user-modifications for specific needs. In order to promote reproducibility and data-sharing in science, transparent software and standardized data formats are an advantage. Here, we present an open source, low-cost, adaptable, and easy to set-up system for combined behavioral tracking, electrophysiology and closed-loop stimulation.ApproachBased on the Open Ephys system (www.open-ephys.org) we developed multiple modules to include real-time tracking and behavior-based closed-loop stimulation. We describe the equipment and provide a step-by-step guide to set up the system. Combining the open source software Bonsai (bonsai-rx.org) for analyzing camera images in real time with the newly developed modules in Open Ephys, we acquire position information, visualize tracking, and perform tracking-based closed-loop stimulation experiments. To analyze the acquired data we provide an open source file reading package in Python.Main resultsThe system robustly visualizes real-time tracking and reliably recovers tracking information recorded from a range of sampling frequencies (30-1000Hz). We combined electrophysiology with the newly-developed tracking modules in Open Ephys to record place cell and grid cell activity in the hippocampus and in the medial entorhinal cortex, respectively. Moreover, we present a case in which we used the system for closed-loop optogenetic stimulation of entorhinal grid cells.SignificanceExpanding the Open Ephys system to include animal tracking and behavior-based closed-loop stimulation extends the availability of high-quality, low-cost experimental setup within standardized data formats serving the neuroscience community.


2021 ◽  
Author(s):  
Mark Schatza ◽  
Ethan Blackwood ◽  
Sumedh Nagrale ◽  
Alik S Widge

Closing the loop between brain activity and behavior is one of the most active areas of development in neuroscience. There is particular interest in developing closed-loop control of neural oscillations. Many studies report correlations between oscillations and functional processes. Oscillation-informed closed-loop experiments might determine whether these relationships are causal and would provide important mechanistic insights which may lead to new therapeutic tools. These closed-loop perturbations require accurate estimates of oscillatory phase and amplitude, which are challenging to compute in real time. We developed an easy to implement, fast and accurate Toolkit for Oscillatory Real-time Tracking and Estimation (TORTE). TORTE operates with the open-source Open Ephys GUI (OEGUI) system, making it immediately compatible with a wide range of acquisition systems and experimental preparations. TORTE efficiently extracts oscillatory phase and amplitude from a target signal and includes a variety of options to trigger closed-loop perturbations. Implementing these tools into existing experiments is easy and adds minimal latency to existing protocols. Most labs use in-house lab-specific approaches, limiting replication and extension of their experiments by other groups. Accuracy of the extracted analytic signal and accuracy of oscillation-informed perturbations with TORTE match presented results by these groups. However, TORTE provides access to these tools in a flexible, easy to use toolkit without requiring proprietary software. We hope that the availability of a high-quality, open-source, and broadly applicable toolkit will increase the number of labs able to perform oscillatory closed-loop experiments, and will improve the replicability of protocols and data across labs.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251812
Author(s):  
Arunkumar Arumugam ◽  
Cole Markham ◽  
Saurabh S. Aykar ◽  
Barbara Van Der Pol ◽  
Paula Dixon ◽  
...  

Growth in open-source hardware designs combined with the decreasing cost of high-quality 3D printers have supported a resurgence of in-house custom lab equipment development. Herein, we describe a low-cost (< $400), open-source CO2 incubator. The system is comprised of a Raspberry Pi computer connected to a 3D printer controller board that has controls for a CO2 sensor, solenoid valve, heater, and thermistors. CO2 is supplied through the sublimation of dry ice stored inside a thermos to create a sustained 5% CO2 supply. The unit is controlled via G-Code commands sent by the Raspberry Pi to the controller board. In addition, we built a custom software application for remote control and used the open-source Grafana dashboard for remote monitoring. Our data show that we can maintain consistent CO2 and temperature levels for over three days without manual interruption. The results from our culture plates and real-time PCR indicate that our incubator performed equally well when compared to a much more expensive commercial CO2 incubator. We have also demonstrated that the antibiotic susceptibility assay can be performed in this low-cost CO2 incubator. Our work also indicates that the system can be connected to incubator chambers of various chamber volumes.


Author(s):  
Chang-Gyu Cgseong ◽  
Jung-Yee Kim ◽  
Doo-Jin Park

<p>Recently, the Internet of things(IoT) has received great attention, and the demand for IOT applications in various fields is increasing. But drawbacks of IoT, such as having to use dedicated equipment and having to pay for a flat fee monthly, do not satisfy the consumers’ demands. These shortcomings of IoT is causing the appearance of users who try to design the environment of IoT that responds their demands and naturally, attempts to have monitoring system through open-source hardware like Arduino. Open source hardware has attracted a great deal of attention for the diffusion of the Internet of things as a key element of the Internet construction. The emergence of open source hardware, which has the advantage of low cost and easy and fast development, has made it possible to embody the idea of object Internet application services. In this paper, we design and implement a system that controls the objects in real time using open source hardware and MQTT protocol.</p>


2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Temidayo J Ofusori ◽  
Gbenga D Obikoya ◽  
Christian O Udoh ◽  
Olubusola O Nuga ◽  
Adedayo K Babarinde

This paper gives the description of the design and implementation of a Real Time Cost Effective Vehicle Tracking System making use of Telit GM862 Module. The Module was installed in a vehicle as the Vehicle Unit while a mobile hand set was used as the Remote Tracking Device. The Module was configured using hyper-terminal on a computer system where the necessary properties and parameters were set. SMSATRUN service was also activated on the module. The SMS information to query the location was sent from the Remote Tracking Device using GSM/GPRS modem on any chosen GSM network to the Vehicle Unit (Module). The Vehicle Unit responds with an SMS message of the location information to the Tracking Device with an authorized mobile number on the GSM Network. The coordinates of the location received are then displayed on Google Map.


Sign in / Sign up

Export Citation Format

Share Document