scholarly journals Assessment of Climate Change Impact on Sorghum Production in Machakos County

2018 ◽  
Vol 3 ◽  
pp. 25-45
Author(s):  
Emily Bosire ◽  
Fredrick Karanja ◽  
Gilbert Ouma ◽  
Wilson Gitau

The APSIM (Agricultural Production Systems sIMulator) model was used to assess the impact of climate change on sorghum production in the semi arid low lands of Machakos County under three future scenarios of climate change (2010-2039, 2040-2069 and 2070-2099) using two Representative Concentration Pathways (RCPs): RCP 4.5 and RCP 8.5. The APSIM model was calibrated and evaluated using field experimental data obtained from a two-year experiment (2014 to 2015) of sorghum parameters carried out at Kenya Agricultural and Livestock Research Organization (KALRO) in Katumani. Model evaluation shows that APSIM sorghum model was capable in quantifying the response of sorghum to nitrogen (N). The values of root mean square error obtained were low for all the sorghum parameters studied. Higher values of modified index of agreement showed more precise simulation of total biomass and grain yield. The observed and simulated sorghum parameters for both cultivars during the long and short growing seasons depicted good correlation with r2values ranging between 45 % and 99%. Across all the GCMs projected mean changes on phenological dates (days to 50% flowering and physiological maturity) showed a consistent decline for both sorghum varieties during the long and short growing seasons with the application of different rates of fertilizer. These trends were more manifested in the RCP8.5 than RCP4.5 and in the end century (2071-2100) of the simulation. With the RCP8.5 flowering dates reduced by 24 and 28 days and the crop cycle duration shrinked by 35 and 38 days in the end century (2071-2100) for gadam and seredo, respectively. There was slight increase or decrease in biomass for both varieties under climate change with no fertilizer application. However, with application of 50kgha-1N, there was a slight increase of biomass. It has been noted that under changing climate sorghum grain yields will constantly increase for both cultivars over the three future time periods with almost 85.3% increase as we approach the end of the century (2070-2099). The extent of yield change was higher for seredo than for gadam.

2021 ◽  
Vol 31 (1) ◽  
pp. 45-50
Author(s):  
A. T. Omokanye ◽  
J. T. Amodu ◽  
S. O. Onifade

Forage, seed yields and herbage chemical composition of phasey bean Macroptilium lathyroides) were investigated at 3 intra-row plant spacings (15, 30 and 45cm between plants; 50 cm between roms), 4 phosphorus (P) fertilizer application rates (O), 50, 100 and 750 kg/ha P) and 5 harvest stages (uncut control, 6, 9, 12 and 15 weeks post sowing) in two growing seasons at Shika in northern Nigeria. The least intra-row plant spacing (15cm) produced higher (p<0.01) total DM vield (1.50 t/ha) than wider spacings. The proportion of leaf was least (40 %) in the widest spacing compared with other spacings (59-62 %). The P-fertilized plots produced 58-60% more total DM vields than the unfertilized plots and total DM yields increased with advanced plant growth. The highest percentage (61-63) of leaf was recorded from 6 to 12 weeks post sowing. Nitrogen level in herbage increased (p<0.05) with increased intra-row plant spacing and P application. Phosphorus and Calcium. Levels in herbage did not respond to intra-row plant spacing but increased with P application. The Ca:P ratios at the harvest stages were between 1:1 and 6:1. The highest seed yields (198 and 188 kg/ha) were recorded respectiely in the least intra-row plant spacing and the application of 100 kg Piha. Supplementation of calves on grasses/cereal stovers with phasey bean hay in a sustainable crop livestock production systems is suggested.


2021 ◽  
Vol 5 ◽  
Author(s):  
Karen Johanna Enciso Valencia ◽  
Álvaro Rincón Castillo ◽  
Daniel Alejandro Ruden ◽  
Stefan Burkart

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.


Author(s):  
Dominic Moran ◽  
Jorie Knook

Climate change is already having a significant impact on agriculture through greater weather variability and the increasing frequency of extreme events. International policy is rightly focused on adapting and transforming agricultural and food production systems to reduce vulnerability. But agriculture also has a role in terms of climate change mitigation. The agricultural sector accounts for approximately a third of global anthropogenic greenhouse gas emissions, including related emissions from land-use change and deforestation. Farmers and land managers have a significant role to play because emissions reduction measures can be taken to increase soil carbon sequestration, manage fertilizer application, and improve ruminant nutrition and waste. There is also potential to improve overall productivity in some systems, thereby reducing emissions per unit of product. The global significance of such actions should not be underestimated. Existing research shows that some of these measures are low cost relative to the costs of reducing emissions in other sectors such as energy or heavy industry. Some measures are apparently cost-negative or win–win, in that they have the potential to reduce emissions and save production costs. However, the mitigation potential is also hindered by the biophysical complexity of agricultural systems and institutional and behavioral barriers limiting the adoption of these measures in developed and developing countries. This includes formal agreement on how agricultural mitigation should be treated in national obligations, commitments or targets, and the nature of policy incentives that can be deployed in different farming systems and along food chains beyond the farm gate. These challenges also overlap growing concern about global food security, which highlights additional stressors, including demographic change, natural resource scarcity, and economic convergence in consumption preferences, particularly for livestock products. The focus on reducing emissions through modified food consumption and reduced waste is a recent agenda that is proving more controversial than dealing with emissions related to production.


2013 ◽  
pp. 18-48 ◽  
Author(s):  
Vesna Popović ◽  
Nada Mijajlović

Although climate change is a global process, its local impacts are diverse. Existing agro-ecological conditions, structure of production, various production systems, technological development, socio-economic factors, and international competition and policy choices will determine the impact that climate change will have on the agricultural and forestry sectors and their adaptive capacity and mitigation potential. The authors use the Danube basin area in Serbia as a case study to test the hypothesis that only sustainable agriculture, based on optimum balance of different types of farming systems and practices and satisfying a range of the region’s specific ecological, social, and economic functions, as well as sustainable forestry, can cope successfully with the climate change. The main topics of the analysis are the climate change trends and impacts on agriculture and forestry and the assessment of their adaptive capacity and mitigation potential, including the proposition of relevant adaptation and mitigation measures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Arlyn Ackerman ◽  
Anthony Wenndt ◽  
Richard Boyles

Grain mold is a major concern in sorghum [Sorghum bicolor (L.) Moench] production systems, threatening grain quality, safety, and nutritional value as both human food and livestock feed. The crop’s nutritional value, environmental resilience, and economic promise poise sorghum for increased acreage, especially in light of the growing pressures of climate change on global food systems. In order to fully take advantage of this potential, sorghum improvement efforts and production systems must be proactive in managing the sorghum grain mold disease complex, which not only jeopardizes agricultural productivity and profitability, but is also the culprit of harmful mycotoxins that warrant substantial public health concern. The robust scholarly literature from the 1980s to the early 2000s yielded valuable insights and key comprehensive reviews of the grain mold disease complex. Nevertheless, there remains a substantial gap in understanding the complex multi-organismal dynamics that underpin the plant-pathogen interactions involved – a gap that must be filled in order to deliver improved germplasm that is not only capable of withstanding the pressures of climate change, but also wields robust resistance to disease and mycotoxin accumulation. The present review seeks to provide an updated perspective of the sorghum grain mold disease complex, bolstered by recent advances in the understanding of the genetic and the biochemical interactions among the fungal pathogens, their corresponding mycotoxins, and the sorghum host. Critical components of the sorghum grain mold disease complex are summarized in narrative format to consolidate a collection of important concepts: (1) the current state of sorghum grain mold in research and production systems; (2) overview of the individual pathogens that contribute to the grain mold complex; (3) the mycotoxin-producing potential of these pathogens on sorghum and other substrates; and (4) a systems biology approach to the understanding of host responses.


2021 ◽  
Vol 48 (4) ◽  
pp. 9-13
Author(s):  
A. O. Agbeja ◽  
K. A. Olaifa ◽  
D. R. Akindolu ◽  
H. O. Salau ◽  
M. S. Akinlade

The livestock system is one of the most important characteristics of agrarian economy; livestock sector provides sustainability and stability to the national economy by contributing to farm energy and food security. Climate change is seen as a major threat to the survival of many species, ecosystems and the sustainability of livestock production systems in many parts of the world. Green house gases (GHG) are released in the atmosphere both by natural sources and anthropogenic (human related) activities. The impact of climate change can heighten the vulnerability of livestock systems and exacerbate existing stresses upon them, such as drought. Parasites and diseases are among the most severe factors that impact livestock production and reproduction, impact on livestock health, impact on feed and fodder availability, reduction in livestock population and impact of climate change on livestock genetics resource. However, the climate change especially global warming may highly influence production performance of farm animals throughout the world, this results in decreased animal production and productivity.     Le système de bétail est l'une des caractéristiques les plus importantes de l'économie agraire; Le secteur de l'élevage assure la durabilité et la stabilité de l'économie nationale en contribuant à l'énergie agricole et à la sécurité alimentaire. Le changement climatique est considéré comme une menace majeure pour la survie de nombreuses espèces, écosystèmes et la durabilité des systèmes de production animale dans de nombreuses régions du monde. Les gaz à effet de serre (GES) sont rejetés dans l'atmosphère à la fois par des sources naturelles et par des activités anthropiques (liées à l'homme). L'impact du changement climatique peut accroître la vulnérabilité des systèmes de bétail et exacerber les tensions existantes sur eux, telles que la sécheresse. Les parasites et les maladies sont parmi les facteurs les plus graves qui ont un impact sur la production et la reproduction du bétail, un impact sur la santé du bétail, un impact sur les aliments et la disponibilité du fourrage, la réduction du cheptel et l'impact du changement climatique sur les ressources génétiques du bétail. Cependant, le changement climatique, en particulier le réchauffement climatique, peut fortement influencer les performances de production des animaux d'élevage à travers le monde, ce qui entraîne une baisse de la production et de la productivité animales.


2021 ◽  
Author(s):  
Percy Jinga

The current climate change is significantly caused by anthropogenic greenhouse gases, particularly CO2 released by burning of fossil fuels. Climate change is predicted to disrupt production systems and supply chains of businesses, potentially affecting their financial performance. ESG investing, the consideration of environmental, social and governance factors by asset managers will likely play a crucial role in combating climate change. To attract ESG funds, companies will have to reduce their carbon footprint, among other actions. When companies reduce scope emissions, they help achieve a goal of the Paris Agreement of limiting average global temperature increase to below 2°C above pre-industrial level. The aim is to identify factors that are likely to increase uptake of ESG investing. The increase in number of ESG investors and their assets, higher financial performance of ESG-linked investments, and increasing regulatory and investor initiatives are likely to increase the impact of ESG investing in reducing greenhouse gas emissions. In addition, investors are becoming more environmentally conscious when making investment decisions. Although some challenges persist, including inconsistency in terminology, huge amount of data to analyze and heterogenous rating standards, ESG investing is likely to play an important role in influencing entities to reduce their carbon footprint.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3127
Author(s):  
Amira A. Goma ◽  
Clive J. C. Phillips

Egypt is one of the hottest countries in the world, and extreme climate events are becoming more frequent, which is consistent with the warming of the planet. The impact of this warming on ecosystems is severe, including on livestock production systems. Under Egyptian conditions, livestock already suffer heat stress periods in summer. The predicted increases in temperature as result of climate change will affect livestock production by reducing growth and milk production because of appetite suppression and conception rate reductions and will increase animal welfare concerns. In severe cases, these effects can result in death. We review the heat stress effects on livestock behaviour, reproduction, and production in the context of predicted climate change for Egypt over the course of this century and offer alternative scenarios to achieve food security for a growing human population. As an example, we combine predictions for reduced milk production during heat stress and human population trajectories to predict that milk availability per person will decline from 61 kg/year in 2011 to 26 kg/year in 2064. Mitigation strategies are discussed and include the substitution of animal-based foods for plant-based foods and laboratory-grown animal products.


Author(s):  
Jovana Kos ◽  
Elizabet Janic-Hajnal ◽  
Anamarija Mandic ◽  
Olivera Djuragic ◽  
Pavle Jovanov ◽  
...  

The presence of aflatoxins (AFs), ochratoxin A (OTA), zearalenone (ZEA), deoxynivalenol (DON), and fumonisins (FUMs) was examined in maize samples from the Republic of Serbia. The maize samples were collected during the period 2012-2016, and analyzed every year after harvest using validated Enzyme Linked Immunosorbent Assay (ELISA) method. The obtained results were considered regarding the weather conditions parameters recorded during the investigated maize growing seasons. Significant differences in weather-related parameters recorded in the five-year period resulted in different mycotoxin profiles between the investigated years. Obtained results indicate that the presence of ZEA and DON in maize is characteristic of years with abundant precipitation, while AFs and OTA mainly occur in maize during hot and dry years. Furthermore, FUMs were detected with different contamination frequency in maize samples from every year. Based on the findings obtained in this study, as well as on noted changes in weather conditions in the recent years it could be assumed that maize from Serbia may become susceptible to problems concerning mycotoxins. Therefore, there is a necessity for monitoring and research related to the mycotoxins occurrence in maize from Serbia.


Author(s):  
Vesna Popovic ◽  
Nada Mijajlovic

Although climate change is a global process, its local impacts are diverse. Existing agro-ecological conditions, structure of production, various production systems, technological development, socio-economic factors, and international competition and policy choices will determine the impact that climate change will have on the agricultural and forestry sectors and their adaptive capacity and mitigation potential. The authors use the Danube basin area in Serbia as a case study to test the hypothesis that only sustainable agriculture, based on optimum balance of different types of farming systems and practices and satisfying a range of the region’s specific ecological, social, and economic functions, as well as sustainable forestry, can cope successfully with the climate change. The main topics of the analysis are the climate change trends and impacts on agriculture and forestry and the assessment of their adaptive capacity and mitigation potential, including the proposition of relevant adaptation and mitigation measures.


Sign in / Sign up

Export Citation Format

Share Document