scholarly journals The Increasing Importance of Environmental, Social and Governance (ESG) Investing in Combating Climate Change

2021 ◽  
Author(s):  
Percy Jinga

The current climate change is significantly caused by anthropogenic greenhouse gases, particularly CO2 released by burning of fossil fuels. Climate change is predicted to disrupt production systems and supply chains of businesses, potentially affecting their financial performance. ESG investing, the consideration of environmental, social and governance factors by asset managers will likely play a crucial role in combating climate change. To attract ESG funds, companies will have to reduce their carbon footprint, among other actions. When companies reduce scope emissions, they help achieve a goal of the Paris Agreement of limiting average global temperature increase to below 2°C above pre-industrial level. The aim is to identify factors that are likely to increase uptake of ESG investing. The increase in number of ESG investors and their assets, higher financial performance of ESG-linked investments, and increasing regulatory and investor initiatives are likely to increase the impact of ESG investing in reducing greenhouse gas emissions. In addition, investors are becoming more environmentally conscious when making investment decisions. Although some challenges persist, including inconsistency in terminology, huge amount of data to analyze and heterogenous rating standards, ESG investing is likely to play an important role in influencing entities to reduce their carbon footprint.

2021 ◽  
Vol 13 (4) ◽  
pp. 1795
Author(s):  
Pedro Dorta Antequera ◽  
Jaime Díaz Pacheco ◽  
Abel López Díez ◽  
Celia Bethencourt Herrera

Many small islands base their economy on tourism. This activity, based to a large extent on the movement of millions of people by air transport, depends on the use of fossil fuels and, therefore, generates a large amount of greenhouse gas (GHG) emissions. In this work, these emissions are evaluated by means of various carbon calculators, taking the Canary Islands as an example, which is one of the most highly developed tourist archipelagos in the world. The result is that more than 6.4 million tonnes (Mt) of CO2 are produced per year exclusively due to the massive transport of tourists over an average distance of more than 3000 km. The relative weight of these emissions is of such magnitude that they are equivalent to more than 50% of the total amount produced by the socioeconomic activity of the archipelago. Although, individually, it is travelers from Russia and Nordic countries who generate the highest carbon footprint due to their greater traveling distance, the British and German tourists account for the greatest weight in the total, with two-thirds of emissions.


2020 ◽  
Vol 4 (1) ◽  
pp. 13-26
Author(s):  
Sally Olasogba ◽  
Les DUCKERS

Abstract: Aim: According to COP23, Climate Change threatens the stability of the planet’s ecosystems, with a tipping point believed to be at only +2°C.  With the burning of fossil fuels, held responsible for the release of much of the greenhouse gases, a sensible world- wide strategy is to replace fossil fuel energy sources with renewable ones. The renewable resources such as wind, hydro, geothermal, wave and tidal energies are found in particular geographical locations whereas almost every country is potentially able to exploit PV and biomass. This paper examines the role that changing climate could have on the growing and processing of biomass. The primary concern is that future climates could adversely affect the yield of crops, and hence the potential contribution of biomass to the strategy to combat climate change. Maize, a C4 crop, was selected for the study because it can be processed into biogas or other biofuels. Four different Nigerian agricultural zones growing maize were chosen for the study. Long-term weather data was available for the four sites and this permitted the modelling of future climates. Design / Research methods: The results of this study come from modelling future climates and applying this to crop models. This unique work, which has integrated climate change and crop modelling to forecast yield and carbon emissions, reveals how maize responds to the predicted increased temperature, change in rainfall, and the variation in weather patterns. In order to fully assess a biomass crop, the full energy cycle and carbon emissions were estimated based on energy and materials inputs involved in farm management: fertilizer application, and tillage type. For maize to support the replacement strategy mentioned above it is essential that the ratio of energy output to energy input exceeds 1, but of course it should be as large as possible. Conclusions / findings: Results demonstrate that the influence of climate change is important and in many scenarios, acts to reduce yield, but that the negative effects can be partially mitigated by careful selection of farm management practices. Yield and carbon footprint is particularly sensitive to the application rate of fertilizer across all locations whilst climate change is the causal driver for the increase in net energy and carbon footprint at most locations. Nonetheless, in order to ensure a successful strategic move towards a low carbon future, and sustainable implementation of biofuel policies, this study provides valuable information for the Nigerian government and policy makers on potential AEZs to cultivate maize under climate change. Further research on the carbon footprint of alternative bioenergy feedstock to assess their environmental carbon footprint and net energy is strongly suggested. Originality / value of the article: This paper extends the review on the impact of climate change on maize production to include future impacts on net energy use and carbon footprint using a fully integrated assessment framework. Most studies focus only on current farm energy use and historical climate change impact on farm GHG emissions.   


2015 ◽  
Vol 44 (5) ◽  
pp. 8-11
Author(s):  
MC Mokolobate ◽  
A Theunissen ◽  
MM Scholtz ◽  
FWC Neser

Beef cattle are unique, because they not only suffer from climate change, but they also contribute to climate change through the emission of greenhouse gases (GHG). Mitigation and adaptation strategies are therefore needed. An effective way to reduce the carbon footprint from beef cattle would be to reduce the numbers and increase the production per animal, thereby improving their productivity. Sustainable crossbreeding systems can be an effective way to reduce GHG, as it has been shown to increase production. There are a wide range of different cattle breeds in South Africa which can be optimally utilized for effective and sustainable crossbreeding. This paper reports on the effects of crossbreeding on the kilogram calf weaned per Large Stock Unit (kgC/LSU) for 29 genotypes. These genotypes were formed by crossing Afrikaner (A) cows with Brahman (B), Charolais (C), Hereford (H) and Simmentaler (S) bulls and by back-crossing the F1 cows to the sire lines. A LSU is the equivalent of an ox of 450 kg with a daily weight gain of 500 g on grass pastures with a mean digestible energy (DE) content of 55% and a requirement of 75 MJ metabolizable energy (ME). Crossbreeding with A as dam line increased the kgC/LSU on average by 8 kg (+6%) - with the CA cross producing the most kgC/LSU (+8%) above that of the AA. The BA dam in crosses with C, H and S, increased kgC/LSU on average by 26 kg (+18%) above that of the AA dam, with the H x BA cross, producing the most kgC/LSU (+21%). The BA, CA, HA and SA F1 dam lines, back-crossed to the sire line breeds, increased kgC/LSU on average by 30 kg (21%), 21 kg (15%), 19kg (13%) and 26 kg (18%) above the that of the AA, respectively. The big differences between breeds in kgC/LSU provide the opportunity to facilitate effective crossbreeding that can be useful in the era of climate change. From this study it is clear that cow productivity can be increased by up to 21% through properly designed, sustainable crossbreeding systems, thereby reducing the carbon footprint of beef production.Keywords: Carbon footprint, cow productivity, kilogram calf, production systems


2015 ◽  
Vol 4 (2) ◽  
pp. 49-62 ◽  
Author(s):  
Mandla Moyo ◽  
Hermina Christina Wingard

South African companies face uncertainty about whether they should commit resources to mitigate vulnerabilities and exploit opportunities arising from climate change. There is ambiguity over whether responding to climate change materially affects the financial sustainability of South African companies. The study sought to establish the extent to which responding to climate change impacts financial performance. Secondary analysis of historic data was used to compare the climate-change performance of 70 Johannesburg Stock Exchange listed companies to indicators of their financial performance. The research concluded that there is a positive and statistically significant correlation between climate-change performance and financial performance


2020 ◽  
Author(s):  
Harish Sharma ◽  
Dhirender Kumar ◽  
Ludarmani . ◽  
K.S. Pant

According to WMO (World Meteorological Organization), 2018 was the fourth warmest year on record and average global temperature reached approximately 1°C above pre-industrial level portraying climate change. Changing weather had an impact on lives and sustainable development especially in developing countries. Agriculture is the human enterprise that is most vulnerable to climate change. Large percentage of the population of developing countries depends upon agriculture for their livelihoods. Agroforestry, is an age old management system practiced by farmers to provide shade, a steady supply of food throughout the year, arrest degradation and maintain soil fertility, diversify, increase and stabilize income sources, enhance use efficiency of soil nutrients, water and radiation and provide regular employment thereby increasing system resilience. Agroforestry, thus provides an example of a set of innovative practices designed to enhance productivity in a way that often contributes to climate change mitigation and can also strengthen system’s ability to cope with adverse impacts of changing climate conditions.


2019 ◽  
Vol 29 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Dewayne L. Ingram ◽  
Charles R. Hall ◽  
Joshua Knight

Understanding carbon footprint (CF) terminology and the science underlying its determination is important to minimizing the negative impacts of new product development and assessing positive or negative cradle-to-grave life-cycle impacts. Life cycle assessment has been used to characterize representative field-grown and container-grown landscape plants. The dominant contributor to the CF and variable costs of field-grown trees is equipment use, or more specifically, the combustion of fossil fuels. Most of that impact is at harvest when heavy equipment is used to dig and move individual trees. Transport of these trees to customers and the subsequent transplant in the landscape are also carbon-intensive activities. Field-grown shrubs are typically dug by hand and have much smaller CFs than trees. Plastics are the major contributor to CF of container-grown plants. Greenhouse heating also can be impactful on the CF of plants depending on the location of the greenhouse or nursery and the length and season(s) of production. Knowing the input products and activities that contribute most toward CF and costs during plant production allows nursery and greenhouse managers to consider protocol modifications that are most impactful on profit potential and environmental impact. Marketers of landscape plants need information about the economic and environmental life-cycle benefits of these products, as they market to environmentally conscious consumers.


2021 ◽  
Vol 5 ◽  
Author(s):  
Karen Johanna Enciso Valencia ◽  
Álvaro Rincón Castillo ◽  
Daniel Alejandro Ruden ◽  
Stefan Burkart

In many parts of the foothills of the Orinoquía region of Colombia, cattle production takes place on poorly drained soils. The region is dominated by extensive grazing systems of Brachiaira humidicola cv. Humidicola, a grass with high adaptation potential under temporal waterlogging conditions. Inadequate management practices and low soil fertility result in degradation, however, with important negative effects on pasture productivity and the quality and provision of (soil) ecosystem services–a situation that is likely to worsen in the near future due to climate change. Against this background, AGROSAVIA (Corporación Colombiana de Investigación Agropecuaria) selected Arachis pintoi CIAT 22160 cv. Centauro (Centauro) as a promising alternative for the sustainable intensification of livestock production and rehabilitation of degraded areas. This study assesses dual-purpose milk production in the foothills of the Colombian Orinoquía from an economic perspective. We compare two production systems: the Centauro–Brachiaira humidicola cv. Humidicola association (new system) and Brachiaira humidicola cv. Humidicola as a monoculture (traditional system). We used cashflow and risk assessment models to estimate economic indicators. The projections for economic returns consider changes in forage characteristics under regional climate change scenarios RCP (2.6, 8.5). The LIFE-SIM model was used to simulate dairy production. Results show that the inclusion of Centauro has the potential to increase animal productivity and profitability under different market scenarios. The impact of climatic variables on forage production is considerable in both climate change scenarios. Both total area and potential distribution of Centauro could change, and biomass production could decline. Brachiaira humidicola cv. Humidicola showed better persistence due to higher nitrogen levels in soil when grown in association with Centauro. The legume also provides a number of ecosystem services, such as improving soil structure and composition, and also contributes to reducing greenhouse gas emissions. This helps to improve the adaptation and mitigation capacity of the system.


Author(s):  
Viktoras Vorobjovas ◽  
Algirdas Motiejunas ◽  
Tomas Ratkevicius ◽  
Alvydas Zagorskis ◽  
Vaidotas Danila

Climate change is one of the main nowadays problem in the world. The politics and strategies for climate change and tools for reduction of greenhouse gas (GHG) emissions and green technologies are created and implemented. Mainly it is focused on energy, transport and construction sectors, which are related and plays a significant role in the roads life cycle. Most of the carbon footprint emissions are generated by transport. The remaining emissions are generated during the road life cycle. Therefore, European and other countries use methods to calculate GHG emissions and evaluate the impact of road construction methods and technologies on the environment. Software tools for calculation GHG emissions are complicated, and it is not entirely clear what GHG emission amounts generate during different stages of road life cycle. Thus, the precision of the obtained results are often dependent on the sources and quantities of data, assumptions, and hypothesis. The use of more accurate and efficient calculation-evaluation methods could let to determine in which stages of road life cycle the largest carbon footprint emissions are generated, what advanced road construction methods and technologies could be used. Also, the road service life could be extended, the consumption of raw materials, repair, and maintenance costs could be reduced. Therefore the time-savings could be improved, and the impact on the environment could be reduced using these GHG calculation-evaluation methods.


2021 ◽  
Author(s):  
Malgorzata Zdunek

<p>Due to global warming and the worldwide depletion of fossil fuel resources, there is a growing need to transform the energy system toward greater use of renewable sources. In Poland, poor air quality constitutes an additional argument for the necessity of such transition. High levels of pollutants concentrations in many locations, especially in urban and suburban areas are caused by emissions from individual heating systems running on fossil fuels.</p><p><span> Data from recent years show </span><span>that renewable generation forms the largest share of the total generation mix in Europe</span><span>. </span><span>Regarding new installation, solar and wind energy dominate renewable </span><span>capacity expansion, jointly accounting for example in 2019 for 90% of all net renewable additions.</span><span> However, along with the increase in the penetration of these energy sources also increases the sensitivity of the power system to weather and climatic conditions.</span></p><p>The study presents the impact of climate change up to the year 2100 on the photovoltaic power generation potential (Pvpot) in Poland. For determination of Pvpot index a set of high-resolution climate models projections, made available within the EURO-CORDEX initiative was used. Maps showing spatial distribution of absolute values of Pvpot in future climate (30-year average for 2071-2100) and relative changes with respect to current climate (30-year average for 2006-2035) are presented, separately for RCP4.5 and RCP8.5 scenario. The influence of meteorological conditions (temperature, wind and solar radiation) on PV module performance is taken into account by applying two different formula (Ciulla et. al, 2014 and Davy and Troccoli, 2012). Furthermore, two options for module orientation are considered: horizontal and inclined at an optimal angle.</p>


Author(s):  
Sohana Debbarma ◽  
Geetanjali Kaushik

India's North-East Region has greater demand for road and personalized modes of transport powered by fossil fuels. And due to emissions, there has been evidence of climate change. It has been found that diesel cars cause greater emissions (per kilometer travelled) as compared to petrol cars; therefore, the use of diesel should be discouraged. The chapter suggests that the emissions in case of public transport passenger-km are lesser than other modes of transport. However, in the North-East Region, there is negligible share of public transport due to poor infrastructure and service facilities. Therefore, improvements should be made with regard to public transport system so that considerable number of passengers shifts to public transport modes. Further, it is inferred that use of alternate vehicle or fuel technologies like hybrid electric vehicles, biofuel, biodiesel, hydrogen fuel need to be initiated to mitigate the climate change.


Sign in / Sign up

Export Citation Format

Share Document