grain mold
Recently Published Documents


TOTAL DOCUMENTS

63
(FIVE YEARS 18)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 7-25
Author(s):  
Louis K. Prom ◽  
Ezekiel Ahn ◽  
Thomas Isakeit ◽  
Clint Magill

The sorghum association panel was evaluated for grain mold severity, seed weight, and germination rate. The 377 accessions were inoculated with Alternaria alternata alone, a mixture of A. alternata, Fusarium thapsinum, and Curvularia lunata, and untreated water-sprayed control during 2010, 2013-2015 growing seasons at the Texas AgriLife Research Farm, Burleson County, Texas. Each accession was evaluated at least twice. Across accessions, Spearman’s rank correlation was performed for non-parametric correlation analysis for grain mold severity, seed weight, and germination rate. There were significant negative correlations between grain mold severity with seed weight and germination rate for the individual treatment and when combined. A significant positive correlation between seed weight and germination rate was observed. The results indicated that higher grain mold severity reduces both sorghum seed weight and germination rate whether deliberately inoculated with fungal pathogens or naturally infected. It can be argued that correlations from this study were more robust due to a large number of accessions from all major sorghum races used and may represent the true association among the three parameters for this pathosystem. Thus, the use of grain mold-resistant lines, resulting in sound seeds and higher germination rates is recommended.


2021 ◽  
Vol 12 ◽  
Author(s):  
C. Aruna ◽  
I. K. Das ◽  
P. Sanjana Reddy ◽  
R. B. Ghorade ◽  
A. R. Gulhane ◽  
...  

The infection caused by grain mold in rainy season grown sorghum deteriorates the physical and chemical quality of the grain, which causes a reduction in grain size, blackening, and making them unfit for human consumption. Therefore, the breeding for grain mold resistance has become a necessity. Pedigree breeding has been widely used across the globe to tackle the problem of grain mold. In the present study, a population breeding approach was employed to develop genotypes resistant to grain mold. The complex genotype × environment interactions (GEIs) make the task of identifying stable grain mold-resistant lines with good grain yield (GY) challenging. In this study, the performance of the 33 population breeding derivatives selected from the four-location evaluation of 150 genotypes in 2017 was in turn evaluated over four locations during the rainy season of 2018. The Genotype plus genotype-by-environment interaction (GGE) biplot analysis was used to analyze a significant GEI observed for GY, grain mold resistance, and all other associated traits. For GY, the location explained a higher proportion of variation (51.7%) while genotype (G) × location (L) contributed to 21.9% and the genotype contributed to 11.2% of the total variation. For grain mold resistance, G × L contributed to a higher proportion of variation (30.7%). A graphical biplot approach helped in identifying promising genotypes for GY and grain mold resistance. Among the test locations, Dharwad was an ideal location for both GY and grain mold resistance. The test locations were partitioned into three clusters for GY and two clusters for grain mold resistance through a “which-won-where” study. Best genotypes in each of these clusters were selected. The breeding for a specific cluster is suggested. Genotype-by-trait biplots indicated that GY is influenced by flowering time, 100-grain weight (HGW), and plant height (PH), whereas grain mold resistance is influenced by glume coverage and PH. Because GY and grain mold score were independent of each other, there is a scope to improve both yield and resistance together.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mallela Venkata Nagesh Kumar ◽  
Vittal Ramya ◽  
Mahalingam Govindaraj ◽  
Chanda Venkata Sameer Kumar ◽  
Setaboyine Maheshwaramma ◽  
...  

Intermittent drought and an incidence of grain mold disease are the two major constraints affecting sorghum production and productivity. The study aimed at developing drought-tolerant sorghum varieties possessing a high protein content and tolerance to grain mold with stable performance using additive main effects and multiplicative interaction (AMMI) and genotype and genotype × environment interaction (GGE) biplot methods. Systematic hybridization among the 11 superior landraces resulted in subsequent pedigree-based breeding and selection from 2010 to 2015 evolved 19 promising varieties of grains such as white, yellow, and brown pericarp grains. These grain varieties were evaluated for their adaptability and stability for yield in 13 rainfed environments and for possessing tolerance to grain mold in three hot spot environments. A variety of yellow pericarp sorghum PYPS 2 (3,698 kg/ha; 14.52% protein; 10.70 mg/100 g Fe) possessing tolerance to grain mold was identified as a stable variety by using both AMMI and GGE analyses. Four mega-environments were identified for grain yield and fodder yield. Sorghum varieties PYPS 2, PYPS 4, PYPS 8, and PYPS 11 were highly stable in E2 with a low grain mold incidence. Besides meeting the nutritional demand of smallholder farmers under dryland conditions, these varieties are suitable for enhancing sorghum productivity under the present climate change scenario.


2021 ◽  
Vol 50 (2) ◽  
pp. 245-251
Author(s):  
AW More ◽  
HV Kalpande ◽  
RR Dhutmal ◽  
SP Mehtre

Due to variable use, drought hardiness, stability of yield and adoptability over wide range of climate, sorghum has maintained its importance and dependability. Dual purpose kharif sorghum hybrid SPH1641 line was developed by using new CMS line PMS71A having wide adoptability across season (kharif and rabi) and high yielding restorer line KR196 at Sorghum Research Station, Parbhani. On the basis of 5 years testing (kharif 2009-14) SPH 1641 recorded the advantage of 13.38 and 16.06 % for grain and 11.52 and 21.57% for fodder yield, over checks CSH 25 and CSH 16 in Maharashtra State Multi location Varietal cum Hybrid Trials. Grain (crude protein 9.8%) and stover quality (IVOMD 43.5%) parameters of this hybrid were comparable with checks. SPH 1641 is moderately tolerant to grain mold (FGMR 3.95 and TGMR 3.00), shoot fly and stem borer as well. Hence the hybrid is released for commercial cultivation in kharif sorghum growing areas of Maharashtra State in 2015. Bangladesh J. Bot. 50(2): 245-251, 2021 (June)


2021 ◽  
Vol 12 ◽  
Author(s):  
Arlyn Ackerman ◽  
Anthony Wenndt ◽  
Richard Boyles

Grain mold is a major concern in sorghum [Sorghum bicolor (L.) Moench] production systems, threatening grain quality, safety, and nutritional value as both human food and livestock feed. The crop’s nutritional value, environmental resilience, and economic promise poise sorghum for increased acreage, especially in light of the growing pressures of climate change on global food systems. In order to fully take advantage of this potential, sorghum improvement efforts and production systems must be proactive in managing the sorghum grain mold disease complex, which not only jeopardizes agricultural productivity and profitability, but is also the culprit of harmful mycotoxins that warrant substantial public health concern. The robust scholarly literature from the 1980s to the early 2000s yielded valuable insights and key comprehensive reviews of the grain mold disease complex. Nevertheless, there remains a substantial gap in understanding the complex multi-organismal dynamics that underpin the plant-pathogen interactions involved – a gap that must be filled in order to deliver improved germplasm that is not only capable of withstanding the pressures of climate change, but also wields robust resistance to disease and mycotoxin accumulation. The present review seeks to provide an updated perspective of the sorghum grain mold disease complex, bolstered by recent advances in the understanding of the genetic and the biochemical interactions among the fungal pathogens, their corresponding mycotoxins, and the sorghum host. Critical components of the sorghum grain mold disease complex are summarized in narrative format to consolidate a collection of important concepts: (1) the current state of sorghum grain mold in research and production systems; (2) overview of the individual pathogens that contribute to the grain mold complex; (3) the mycotoxin-producing potential of these pathogens on sorghum and other substrates; and (4) a systems biology approach to the understanding of host responses.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Cyril Diatta ◽  
Mame P. Sarr ◽  
Thierry Klanvi Tovignan ◽  
Ousmane Aidara ◽  
Daniel Kwadjo Dzidzienyo ◽  
...  

Combining resistance to grain mold with high grain yield in tannin-free white-grained photoperiod-insensitive sorghum is of major interest for farmers in Senegal. In this study, GGE biplot analysis was used to assess the performance, adaptability, and stability of eleven sorghum parental lines and their hybrid combinations for yield and grain mold resistance under Senegalese environments. Eleven inbred lines along with their 22 hybrid combinations and one check were evaluated across three sites during the 2015 and 2016 rainy seasons under natural grain mold infestation. The results of this study showed strong genetic variability among studied genotypes for all measured traits. The highly significant G × E interaction effects for grain yield and panicle grain mold rating score (PGMR) indicated that both traits are influenced by genetics and to some extent by environment. Broad-sense heritability computed was high for all these traits except PGMR, showing a high environmental pressure on this later. The study showed that grain mold pressure in the studied sites decreased following a South-North gradient similar to the rainfall pattern, with the south region wetter, explaining the high disease pressure in Darou and Sinthiou Maleme contrary to Bambey. The GGE biplot analysis performed showed that the first two principal components explained 85.84% of the total variation of GGE sum of squares for grain yield. The which-won-where view of the GGE biplot for grain yield showed that the hybrid HB16 was the most adapted for Bambey area. The ranking of genotypes based on both yield performance and stability showed that HB16, HB5, HB21, HB18, and HB7 were the best hybrids combining high grain yield, high stability performance, and tolerance to grain mold disease across the test environments. These hybrids outperformed the best yielding inbred line P29 (2196.7 kg ha−1) with grain yield advantages ranging 17–60%. Therefore, these hybrids could be recommended to farmers in order to improve sorghum yield in Senegal.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Habte Nida ◽  
Sanghun Lee ◽  
Ying Li ◽  
Tesfaye Mengiste

Abstract Background Sorghum grain mold is the most important disease of the crop. The disease results from simultaneous infection of the grain by multiple fungal species. Host responses to these fungi and the underlying molecular and cellular processes are poorly understood. To understand the genetic, molecular and biochemical components of grain mold resistance, transcriptome profiles of the developing grain of resistant and susceptible sorghum genotypes were studied. Results The developing kernels of grain mold resistant RTx2911 and susceptible RTx430 sorghum genotypes were inoculated with a mixture of fungal pathogens mimicking the species complexity of the disease under natural infestation. Global transcriptome changes corresponding to multiple molecular and cellular processes, and biological functions including defense, secondary metabolism, and flavonoid biosynthesis were observed with differential regulation in the two genotypes. Genes encoding pattern recognition receptors (PRRs), regulators of growth and defense homeostasis, antimicrobial peptides, pathogenesis-related proteins, zein seed storage proteins, and phytoalexins showed increased expression correlating with resistance. Notably, SbLYK5 gene encoding an orthologue of chitin PRR, defensin genes SbDFN7.1 and SbDFN7.2 exhibited higher expression in the resistant genotype. The SbDFN7.1 and SbDFN7.2 genes are tightly linked and transcribed in opposite orientation with a likely common bidirectional promoter. Interestingly, increased expression of JAZ and other transcriptional repressors were observed that suggested the tight regulation of plant defense and growth. The data suggest a pathogen inducible defense system in the developing grain of sorghum that involves the chitin PRR, MAPKs, key transcription factors, downstream components regulating immune gene expression and accumulation of defense molecules. We propose a model through which the biosynthesis of 3-deoxyanthocynidin phytoalexins, defensins, PR proteins, other antimicrobial peptides, and defense suppressing proteins are regulated by a pathogen inducible defense system in the developing grain. Conclusions The transcriptome data from a rarely studied tissue shed light into genetic, molecular, and biochemical components of disease resistance and suggested that the developing grain shares conserved immune response mechanisms but also components uniquely enriched in the grain. Resistance was associated with increased expression of genes encoding regulatory factors, novel grain specific antimicrobial peptides including defensins and storage proteins that are potential targets for crop improvement.


Author(s):  
Viral Kaushikbhai Desai KalubhaiBalubhai Rakholiya ◽  
Vijay A. Patil
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document