Study And Evaluation of Injection Timing of CIDI Engine Injection Pump Using Alternate Fuel i.e Biodiesel Fuel

Author(s):  
P. K. Singh ◽  
Rohit K. Shrivastava ◽  
K. G. Sinha

In this investigation an experimental study of the effects of FIP injection timing on Specific Fuel Consumption(SFC), Brake Thermal Efficiency(BTE), Engine Exhaust Gas Temperature(EEGT), CO, HC, NOX and Smoke of “Kirloskar- 6R1080TA, 6-CylinderInline, Direct Injection, Turbocharged Intercooled, 191 hp Diesel Engine” has been conducted. Injection Timing retardation method has been utilised to reduce SFC, EEGT, CO, HC, NOX, Smoke and increase BTE of Kirloskar-6R1080TA Diesel Engine. The Kirloskar 6R1080TA engine has been tested for six different injection timings (23°, 21°, 20°, 19°, 18° and 17° CA BTC) at same engine speeds and load conditions. The SFC,EEGT, CO, HC, NOX and Smoke of engine are approximately higher and BTE lower for injection timings at 23°, 21°, 20°, 18° and 17° CA BTC than 19° CA BTC at same speed and load. The results are showing that SFC,EEGT,CO,HC,NOX and Smoke are approximately reduces and BTE increases by reducing injection timing from 23° CA BTC to 19° CA BTC. Optimum FIP injection timing for Kirloskar 6R1080TA engine has been achieved at 19° CA BTC.

2021 ◽  
Vol 13 (14) ◽  
pp. 7688
Author(s):  
Asif Afzal ◽  
Manzoore Elahi M. Soudagar ◽  
Ali Belhocine ◽  
Mohammed Kareemullah ◽  
Nazia Hossain ◽  
...  

In this study, engine performance on thermal factors for different biodiesels has been studied and compared with diesel fuel. Biodiesels were produced from Pongamia pinnata (PP), Calophyllum inophyllum (CI), waste cooking oil (WCO), and acid oil. Depending on their free fatty acid content, they were subjected to the transesterification process to produce biodiesel. The main characterizations of density, calorific range, cloud, pour, flash and fire point followed by the viscosity of obtained biodiesels were conducted and compared with mineral diesel. The characterization results presented benefits near to standard diesel fuel. Then the proposed diesel engine was analyzed using four blends of higher concentrations of B50, B65, B80, and B100 to better substitute fuel for mineral diesel. For each blend, different biodiesels were compared, and the relative best performance of the biodiesel is concluded. This diesel engine was tested in terms of BSFC (brake-specific fuel consumption), BTE (brake thermal efficiency), and EGT (exhaust gas temperature) calculated with the obtained results. The B50 blend of acid oil provided the highest BTE compared to other biodiesels at all loads while B50 blend of WCO provided the lowest BSFC compared to other biodiesels, and B50 blends of all biodiesels provided a minimum % of the increase in EGT compared to diesel.


Author(s):  
Hyun Kyu Suh ◽  
Hyun Gu Roh ◽  
Chang Sik Lee

The aim of this work is to investigate the effect of the blending ratio and pilot injection on the spray and combustion characteristics of biodiesel fuel and compare these factors with those of diesel fuel in a direct injection common-rail diesel engine. In order to study the factors influencing the spray and combustion characteristics of biodiesel fuel, experiments involving exhaust emissions and engine performance were conducted at various biodiesel blending ratios and injection conditions for engine operating conditions. The macroscopic and microscopic spray characteristics of biodiesel fuel, such as injection rate, split injection effect, spray tip penetration, droplet diameter, and axial velocity distribution, were compared with the results from conventional diesel fuel. For biodiesel blended fuel, it was revealed that a higher injection pressure is needed to achieve the same injection rate at a higher blending ratio. The spray tip penetration of biodiesel fuel was similar to that of diesel. The atomization characteristics of biodiesel show that it has higher Sauter mean diameter and lower spray velocity than conventional diesel fuel due to high viscosity and surface tension. The peak combustion pressures of diesel and blending fuel increased with advanced injection timing and the combustion pressure of biodiesel fuel is higher than that of diesel fuel. As the pilot injection timing is retarded to 15deg of BTDC that is closed by the top dead center, the dissimilarities of diesel and blending fuels combustion pressure are reduced. It was found that the pilot injection enhanced the deteriorated spray and combustion characteristics of biodiesel fuel caused by different physical properties of the fuel.


Author(s):  
Bibhuti B. Sahoo ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Synthesis gas (Syngas), a mixture of hydrogen and carbon monoxide, can be manufactured from natural gas, coal, petroleum, biomass, and even from organic wastes. It can substitute fossil diesel as an alternative gaseous fuel in compression ignition engines under dual fuel operation route. Experiments were conducted in a single cylinder, constant speed and direct injection diesel engine fuelled with syngas-diesel in dual fuel mode. The engine is designed to develop a power output of 5.2 kW at its rated speed of 1500 rpm under variable loads with inducted syngas fuel having H2 to CO ratio of 1:1 by volume. Diesel fuel as a pilot was injected into the engine in the conventional manner. The diesel engine was run at varying loads of 20, 40, 60, 80 and 100%. The performance of dual fuel engine is assessed by parameters such as thermal efficiency, exhaust gas temperature, diesel replacement rate, gas flow rate, peak cylinder pressure, exhaust O2 and emissions like NOx, CO and HC. Dual fuel operation showed a decrease in brake thermal efficiency from 16.1% to a maximum of 20.92% at 80% load. The maximum diesel substitution by syngas was found 58.77% at minimum exhaust O2 availability condition of 80% engine load. The NOx level was reduced from 144 ppm to 103 ppm for syngas-diesel mode at the best efficiency point. Due to poor combustion efficiency of dual fuel operation, there were increases in CO and HC emissions throughout the range of engine test loads. The decrease in peak pressure causes the exhaust gas temperature to rise at all loads of dual fuel operation. The present investigation provides some useful indications of using syngas fuel in a diesel engine under dual fuel operation.


Author(s):  
K Anand ◽  
R P Sharma ◽  
P S Mehta

Suitability of vegetable oil as an alternative to diesel fuel in compression ignition engines has become attractive, and research in this area has gained momentum because of concerns on energy security, high oil prices, and increased emphasis on clean environment. The experimental work reported here has been carried out on a turbocharged direct-injection multicylinder truck diesel engine using diesel fuel and jatropha methyl ester (JME)-diesel blends. The results of the experimental investigation indicate that an increase in JME quantity in the blend slightly advances the dynamic fuel injection timing and lowers the ignition delay compared with the diesel fuel. A maximum rise in peak pressure limited to 6.5 per cent is observed for fuel blends up to 40 per cent JME for part-load (up to about 50 per cent load) operations. However, for a higher-JME blend, the peak pressures decrease at higher loads remained within 4.5 per cent. With increasing proportion of JME in the blend, the peak pressure occurrence slightly advances and the maximum rate of pressure rise, combustion duration, and exhaust gas temperature decrease by 9 per cent, 15 per cent and 17 per cent respectively. Although the changes in brake thermal efficiencies for 20 per cent and 40 per cent JME blends compared with diesel fuel remain insignificant, the 60 per cent JME blend showed about 2.7 per cent improvement in the brake thermal efficiency. In general, it is observed that the overall performance and combustion characteristics of the engine do not alter significantly for 20 per cent and 40 per cent JME blends but show an improvement over diesel performance when fuelled with 60 per cent JME blend.


Author(s):  
Jaspreet Hira ◽  
Basant Singh Sikarwar ◽  
Rohit Sharma ◽  
Vikas Kumar ◽  
Prakhar Sharma

In this research work, a surge tank is developed and utilised in the diesel engine for controlling the NOX emission. This surge tank acts as a damper for fluctuations caused by exhaust gases and also an intercooler in reducing the exhaust gas temperature into the diesel engine intake manifold. With the utilisation of the surge tank, the NOX emission level has been reduced to approximately 50%. The developed surge tank is proved to be effective in maintaining the circulation of water at appropriate temperatures. A trade-off has been established between the engine performance parameters including the brake thermal efficiency, brake specific fuel consumption, exhaust gas temperature and all emission parameters including HC and CO.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
S. Savariraj ◽  
T. Ganapathy ◽  
C. G. Saravanan

Biodiesel derived from nonedible feed stocks such as Mahua, Jatropha, Pongamia are reported to be feasible choices for developing countries including India. This paper presents the results of investigation of performance and emissions characteristics of diesel engine using Mahua biodiesel. In this investigation, the blends of varying proportions of Mahua biodiesel and diesel were prepared, analyzed compared with the performance of diesel fuel, and studied using a single cylinder diesel engine. The brake thermal efficiency, brake-specific fuel consumption, exhaust gas temperatures, Co, Hc, No, and smoke emissions were analyzed. The tests showed decrease in the brake thermal efficiencies of the engine as the amount of Mahua biodiesel in the blend increased. The maximum percentage of reduction in BTE (14.3%) was observed for B-100 at full load. The exhaust gas temperature with the blends decreased as the proportion of Mahua increases in the blend. The smoke, Co, and No emissions of the engine were increased with the blends at all loads. However, Hc emissions of Mahua biodiesels were less than that of diesel.


Author(s):  
J. Hemanandh ◽  
S. Ganesan ◽  
C. Sathya Sai Puneeth ◽  
G. Venkata Sai Naga Manikankata Tejesh

In this study, the emissions of Kirloskar Direct Injection 4-stroke Diesel engine, single cylinder air cooled, 4.4 kW, constant speed at 1500 rpm, compression ratio 17.5:1 with different blends of diesel refined sunflower oil is analysed. Methyl Esters of refined sunflower was trans-esterified before blending with diesel. The main objective of this experiment is to study the NOx, CO, HC and smoke emissions by varying the injection timing and load. The experiments were conducted with various blends - BRSF10, BRSF30, BRSF40, at different pressures (180 bar, 210 bar, and 240 bar) and different level of loads (0%, 25%, 50%, 75%, 100%). A 3-hole nozzle was used to inject the fuel. The combustion results were studied using AVL gas analyser. The results show that engine temperature decreases at higher loads by 2°, NOx and CO decreases and there was a marginal increase in HC and the exhaust temperature.


2020 ◽  
Vol 10 (2) ◽  
pp. 183-190
Author(s):  
Viet Dung Tran ◽  
Anh Tuan Le ◽  
Anh Tuan Hoang

As a rule, the highest permissible sulfur content in the marine fuel must drop below 0.5% from 1 January 2020 for global fleets. As such, ships operating in emission control areas must use low sulfur or non-sulfur fuel to limit sulfur emissions as a source of acid rain. However, that fact has revealed two challenges for the operating fleet: the very high cost of ultra-low sulfur diesel (ULSD) and the installation of the fuel conversion system and the ULSD cooling system. Therefore, a solution that blends ULSD and biodiesel (BO) into a homogeneous fuel with properties equivalent to that of mineral fuels is considered to be significantly effective. In the current work, an advanced ultrasonic energy blending technology has been applied to assist in the production of homogeneous ULSD-BO blends (ULSD, B10, B20, B30, and B50 with blends of coconut oil methyl ester with ULSD of 10%, 20%, 30% and 50% by volume) which is supplied to a small marine diesel engine on a dynamo test bench to evaluate the power and torque characteristics, also to consider the effect of BO fuel on specific fuel consumption exhaust gas temperature and brake thermal efficiency. The use of the ultrasonic mixing system has yielded impressive results for the homogeneous blend of ULSD and BO, which has contributed to improved combustion quality and thermal efficiency. The results have shown that the power, torque, and the exhaust gas temperature, decrease by approximately 9%, 2%, and 4% respectively with regarding the increase of the blended biodiesel rate while the specific fuel consumption and brake thermal efficiency tends to increase of around 6% and 11% with those blending ratios.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Amar Pandhare ◽  
Atul Padalkar

This paper presents the performance of biodiesel blends in a single-cylinder water-cooled diesel engine. All experiments were carried out at constant speed 1500 rpm and the biodiesel blends were varied from B10 to B100. The engine was equipped with variable compressions ratio (VCR) mechanism. For 100% Jatropha biodiesel, the maximum fuel consumption was 15% higher than that of diesel fuel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel at various load conditions. The increase in specific fuel consumption ranged from 2.75% to 15% for B10 to B100 fuels. The exhaust gas temperature increased with increased biodiesel blend. The highest exhaust gas temperature observed was 430°C with biodiesel for load conditions 1.5 kW, 2.5 kW, and 3.5 kW, where as for diesel the maximum exhaust gas temperature was 440°C. The CO2emission from the biodiesel fuelled engine was higher by 25% than diesel fuel at full load. The CO emissions were lower with Jatropha by 15%, 13%, and 13% at 1.5 kW, 2.5 kW, and 3.5 kW load conditions, respectively. TheNOxemissions were higher by 16%, 19%, and 20% at 1.5 kW, 2.5 kW, and 3.5 kW than that of the diesel, respectively.


2013 ◽  
Vol 393 ◽  
pp. 344-349 ◽  
Author(s):  
Syarifah Yunus ◽  
Amirul Abd Rashid ◽  
Syazuan Abdul Latip ◽  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
...  

This paper deals with performances and emissions of Jatropha-Palm blended biodiesel as fuel for 4-stroke single vertical cylinder diesel engine. Five fuel samples were tested; i) Diesel fuel supplied by Petronas (PDF); ii) 5% of blended Jatropha-Palm biodiesel and 95% Diesel fuel (B5JPB); iii) 10% of blended Jatropha-Palm biodiesel and 90% Diesel fuel (B10JPB); iv) 15% of blended Jatropha-Palm biodiesel and 85% Diesel fuel (B15JPB); and v) 20% of blended Jatropha-Palm biodiesel and 80% Diesel fuel (B20JPB). Engine performances (specific fuel consumption, brake thermal efficiency) and emissions (exhaust gas temperature and Nox emission) were analyzed and have been discussed in this study. All tests were carried out at varied load conditions which were 0.13, 0.15, 0.17, 0.19 and 0.21 kW. The results revealed that B10JPB blended showed better engine performances compared to its other blends and comparable performances compared to PDF. Comparable Nox emitted of all Jatropha-Palm fuel blended biodiesel fuel sample has been demonstrated to those PDF.


Sign in / Sign up

Export Citation Format

Share Document