scholarly journals Liver nuclear hormone receptor PPAR, LXR and RXR expression and blood lipid and glucose levels in susceptible and resistent to hepatocarcinogenesis strain of mice

2010 ◽  
Vol 56 (4) ◽  
pp. 480-489
Author(s):  
E.N. Pivovarova ◽  
N.V. Baginskaya ◽  
M.L. Perepechaeva ◽  
S.I. Ilnitskaya ◽  
M.I. Dushkin

Earlier it was shown that male mice of the DD/He strain were highly susceptible to ortho-aminoasotoluene (OAT) induced hepatocarcinogenesis, and resistant to spontaneous liver tumor development as compared to the СС57BR/Mv strain. In the present work we have made a comparative investigation of peroxisome proliferator-activated receptor (PPAR), liver X-receptor (LXR) and retinoic X-receptor (RXR) mRNA levels in liver as well as concentrations of corticosterone, glucose, lipids and insulin in blood of male DD/He and СС57BR/Mv mice. Using the multiplex RT-PCR method it was found that PPAR-α, PPAR-γ, RXR-α and RXR-β mRNA content was essentially decreased in the liver of DD mice as compared to mice of the СС57BR strain. No significant interstrain differences of LXR-α and LXR-β mRNA content were found. In DD micetere was more then the 3-fold decrease of blood content of corticosterone, which is involved in PPAR and RXR regulation. DD mice demonstrated a significant decrease in blood serum glucose and insulin concentrations as well as higher reactivity to insulin as compared with СС57BR mice. Elevated blood total cholesterol and cholesterol HDL level were found in DD mice whereas triglyceride content was basically the same in both mouse strains. It is known that glucocorticoids, PPAR and RXR play crucial role in transcription regulation of inflammation response. Therefore our data allow to suggest that decreased corticosterone level in blood, PPAR and RXR mRNA content in liver of the DD strain may lead to induction of inflammation by OAT exposure, resulting in a high incidence of tumorigenesis in this strain.

2008 ◽  
Vol 22 (10) ◽  
pp. 2353-2363 ◽  
Author(s):  
Jen-Chieh Chuang ◽  
Ji-Young Cha ◽  
James C. Garmey ◽  
Raghavendra G. Mirmira ◽  
Joyce J. Joyce J.

Abstract The endocrine pancreas comprises the islets of Langerhans, tiny clusters of cells that contribute only about 2% to the total pancreas mass. However, this little endocrine organ plays a critical role in maintaining glucose homeostasis by the regulated secretion of insulin (by β-cells) and glucagon (by α-cells). The rapid increase in the incidence of diabetes worldwide has spurred renewed interest in islet cell biology. Some of the most widely prescribed oral drugs for treating type 2 diabetes include agents that bind and activate the nuclear hormone receptor, peroxisome proliferator-activated receptor-γ. As a first step in addressing potential roles of peroxisome proliferator-activated receptor-γ and other nuclear hormone receptors (NHRs) in the biology of the endocrine pancreas, we have used quantitative real-time PCR to profile the expression of all 49 members of the mouse NHR superfamily in primary islets, and cell lines that represent α-cells (αTC1) and β-cells (βTC6 and MIN6). In summary, 19 NHR members were highly expressed in both α- and β-cell lines, 13 receptors showed predominant expression (at least an 8-fold difference) in α- vs. β-cell lines, and 10 NHRs were not expressed in the endocrine pancreas. In addition we evaluated the relative expression of these transcription factors during hyperglycemia and found that 16 NHRs showed significantly altered mRNA levels in mouse islets. A similar survey was conducted in primary human islets to reveal several significant differences in NHR expression between mouse and man. These data identify potential therapeutic targets in the endocrine pancreas for the treatment of diabetes mellitus.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Daniela P. Foti ◽  
Francesco Paonessa ◽  
Eusebio Chiefari ◽  
Antonio Brunetti

The insulin receptor (IR) plays a crucial role in mediating the metabolic and proliferative functions triggered by the peptide hormone insulin. There is considerable evidence that abnormalities in both IR expression and function may account for malignant transformation and tumour progression in some human neoplasias, including breast cancer. PPARγis a ligand-activated, nuclear hormone receptor implicated in many pleiotropic biological functions related to cell survival and proliferation. In the last decade, PPARγagonists—besides their known action and clinical use as insulin sensitizers—have proved to display a wide range of antineoplastic effects in cells and tissues expressing PPARγ, leading to intensive preclinical research in oncology. PPARγand activators affect tumours by different mechanisms, involving cell proliferation and differentiation, apoptosis, antiinflammatory, and antiangiogenic effects. We recently provided evidence that PPARγand agonists inhibit IR by non canonical, DNA-independent mechanisms affecting IR gene transcription. We conclude that IR may be considered a new PPARγ“target” gene, supporting a potential use of PPARγagonists as antiproliferative agents in selected neoplastic tissues that overexpress the IR.


2008 ◽  
Vol 294 (1) ◽  
pp. E69-E77 ◽  
Author(s):  
Nathalie Koulmann ◽  
Lahoucine Bahi ◽  
Florence Ribera ◽  
Hervé Sanchez ◽  
Bernard Serrurier ◽  
...  

The present experiment was designed to examine the effects of hypothyroidism and calcineurin inhibition induced by cyclosporin A (CsA) administration on both contractile and metabolic soleus muscle phenotypes, with a novel approach to the signaling pathway controlling mitochondrial biogenesis. Twenty-eight rats were randomly assigned to four groups, normothyroid, hypothyroid, and orally treated with either CsA (25 mg/kg, N-CsA and H-CsA) or vehicle (N-Vh and H-Vh), for 3 wk. Muscle phenotype was estimated by the MHC profile and activities of oxidative and glycolytic enzymes. We measured mRNA levels of the peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), the major regulator of mitochondrial content. We also studied the expression of the catalytic A-subunit of calcineurin (CnA) both at protein and transcript levels and mRNA levels of modulatory calcineurin inhibitor proteins (MCIP)-1 and -2, which are differentially regulated by calcineurin activity and thyroid hormone, respectively. CsA-administration induced a slow-to-fast MHC transition limited to the type IIA isoform, which is associated with increased oxidative capacities. Hypothyroidism strongly decreased both the expression of fast MHC isoforms and oxidative capacities. Effects of CsA administration on muscle phenotype were blocked in conditions of thyroid hormone deficiency. Changes in the oxidative profile were strongly related to PGC-1α changes and associated with phosphorylation of p38 MAPK. Calcineurin and MCIPs mRNA levels were decreased by both hypothyroidism and CsA without additive effects. Taken together, these results suggest that adult muscle phenotype is primarily under the control of thyroid state. Physiological levels of thyroid hormone are required for the effects of calcineurin inhibition on slow oxidative muscle phenotype.


PPAR Research ◽  
2009 ◽  
Vol 2009 ◽  
pp. 1-15 ◽  
Author(s):  
Weimin He

The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPAR) is an important transcription factor regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPAR have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common polymorphism of PPAR, Pro12Ala of PPAR2, the isoform expressed only in adipose tissue has been shown to be associated with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex interaction between the PPAR2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated fatty acids to saturated fatty acids and/or between the PPAR2 Pro12Ala polymorphism and genetic factors such as polymorphic mutations in other genes. In addition, this polymorphic mutation in PPAR2 is associated with other aspects of human diseases, including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies.


2010 ◽  
Vol 8 (1) ◽  
pp. nrs.08002 ◽  
Author(s):  
Sean R. Pyper ◽  
Navin Viswakarma ◽  
Songtao Yu ◽  
Janardan K. Reddy

The peroxisome proliferator-activated receptor α (PPARα, or NR1C1) is a nuclear hormone receptor activated by a structurally diverse array of synthetic chemicals known as peroxisome proliferators. Endogenous activation of PPARα in liver has also been observed in certain gene knockout mouse models of lipid metabolism, implying the existence of enzymes that either generate (synthesize) or degrade endogenous PPARα agonists. For example, substrates involved in fatty acid oxidation can function as PPARα ligands. PPARα serves as a xenobiotic and lipid sensor to regulate energy combustion, hepatic steatosis, lipoprotein synthesis, inflammation and liver cancer. Mainly, PPARα modulates the activities of all three fatty acid oxidation systems, namely mitochondrial and peroxisomal β-oxidation and microsomal co-oxidation, and thus plays a key role in energy expenditure. Sustained activation of PPARα by either exogenous or endogenous agonists leads to the development of hepatocellular carcinoma resulting from sustained oxidative and possibly endoplasmic reticulum stress and liver cell proliferation. PPARα requires transcription coactivator PPAR-binding protein (PBP)/mediator subunit 1(MED1) for its transcriptional activity.


Author(s):  
Ann Louise Olson

AbstractSkeletal muscle and adipose tissue play a major role in the regulation of whole-body glucose homeostasis. Much of the coordinated regulation of whole-body glucose homeostasis results from the regulation of lipid storage and release by adipose tissue and efficient switching between glucose oxidation and fatty acid oxidation in skeletal muscle. A control point for these biochemical actions center around the regulation of the insulin responsive glucose transporter, GLUT4. This review examines the regulation of GLUT4 in adipose tissue and skeletal muscle, in the context of the steroid nuclear hormone receptor signaling.


2019 ◽  
Vol 31 (8) ◽  
pp. 1401
Author(s):  
Silvana R. Ferreira ◽  
Leandro M. Vélez ◽  
Maria F. Heber ◽  
Giselle A. Abruzzese ◽  
Alicia B. Motta

It is known that androgen excess induces changes in fetal programming that affect several physiological pathways. Peroxisome proliferator-activated receptors (PPARs) α, δ and γ are key mediators of female reproductive functions, in particular in uterine tissues. Thus, we aimed to study the effect of prenatal hyperandrogenisation on the uterine PPAR system. Rats were treated with 2mg testosterone from Day 16 to 19 of pregnancy. Female offspring (PH group) were followed until 90 days of life, when they were killed. The PH group exhibited an anovulatory phenotype. We quantified uterine mRNA levels of PPARα (Ppara), PPARδ (Ppard), PPARγ (Pparg), their regulators peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Ppargc1a) and nuclear receptor co-repressor 1 (Ncor1) and cyclo-oxygenase (COX)-2 (Ptgs2), and assessed the lipid peroxidation (LP) index and levels of glutathione (GSH) and prostaglandin (PG) E2. The PH group showed decreased levels of all uterine PPAR isoforms compared with the control group. In addition, PGE2 and Ptgs2 levels were increased in the PH group, which led to a uterine proinflammatory environment, as was LP, which led to a pro-oxidant status that GSH was not able to compensate for. These results suggest that prenatal exposure to androgen excess has a fetal programming effect that affects the gene expression of PPAR isoforms, and creates a misbalanced oxidant–antioxidant state and a proinflammatory status.


Nutrients ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 652 ◽  
Author(s):  
Ju-Sik Park ◽  
John O. Holloszy ◽  
Kijin Kim ◽  
Jin-Ho Koh

This study aimed to investigate the long-term effects of training intervention and resting on protein expression and stability of peroxisome proliferator-activated receptor β/δ (PPARβ), peroxisome proliferator-activated receptor gamma coactivator 1-α (PGC1α), glucose transporter type 4 (GLUT4), and mitochondrial proteins, and determine whether glucose homeostasis can be regulated through stable expression of these proteins after training. Rats swam daily for 3, 6, 9, 14, or 28 days, and then allowed to rest for 5 days post-training. Protein and mRNA levels were measured in the skeletal muscles of these rats. PPARβ was overexpressed and knocked down in myotubes in the skeletal muscle to investigate the effects of swimming training on various signaling cascades of PGC-1α transcription, insulin signaling, and glucose uptake. Exercise training (Ext) upregulated PPARβ, PGC-1α, GLUT4, and mitochondrial enzymes, including NADH-ubiquinone oxidoreductase (NUO), cytochrome c oxidase subunit I (COX1), citrate synthase (CS), and cytochrome c (Cyto C) in a time-dependent manner and promoted the protein stability of PPARβ, PGC-1α, GLUT4, NUO, CS, and Cyto C, such that they were significantly upregulated 5 days after training cessation. PPARβ overexpression increased the PGC-1α protein levels post-translation and improved insulin-induced signaling responsiveness and glucose uptake. The present results indicate that Ext promotes the protein stability of key mitochondria enzymes GLUT4, PGC-1α, and PPARβ even after Ext cessation.


2006 ◽  
Vol 100 (2) ◽  
pp. 642-648 ◽  
Author(s):  
Xing-Hai Yao ◽  
Li Chen ◽  
B. L. Grégoire Nyomba

Rat offspring exposed to ethanol (EtOH rats) during pregnancy are insulin resistant, but it is unknown whether they have increased gluconeogenesis. To address this issue, we determined blood glucose and liver gluconeogenic genes, proteins, and enzyme activities before and after insulin administration in juvenile and adult EtOH rats and submitted adult EtOH rats to a pyruvate challenge. In juvenile rats, basal glucose; peroxisome proliferator-activated receptor-coactivator-1α protein and mRNA; and phospho enolpyruvate carboxykinase enzyme activity, protein, and mRNA were similar between groups. After insulin injection, these parameters failed to decrease in EtOH rats, but glucose decreased by 30% and gluconeogenic enzymes, proteins, and mRNAs decreased by 50–70% in control rats. In adult offspring, basal peroxisome proliferator-activated receptor-coactivator-1α protein and mRNA levels were 40–80% higher in EtOH rats than in controls. Similarly, basal phospho enolpyruvate carboxykinase activity, protein, and mRNA were ∼1.8-fold greater in EtOH rats than in controls. These parameters decreased by ∼50% after insulin injection in control rats, but they remained unchanged in EtOH rats. After insulin injection in the adult rats, glucose decreased by 60% in controls but did not decrease significantly in EtOH rats. A subset of adult EtOH rats had fasting hyperglycemia and an exaggerated glycemic response to pyruvate compared with controls. The data indicate that, after prenatal EtOH exposure, the expression of gluconeogenic genes is exaggerated in adult rat offspring and is insulin resistant in both juvenile and adult rats, explaining increased gluconeogenesis. These alterations persist through adulthood and may contribute to the pathogenesis of Type 2 diabetes after exposure to EtOH in utero.


Endocrinology ◽  
2010 ◽  
Vol 151 (11) ◽  
pp. 5247-5254 ◽  
Author(s):  
Victor Aguilar ◽  
Jean-Sébastien Annicotte ◽  
Xavier Escote ◽  
Joan Vendrell ◽  
Dominique Langin ◽  
...  

Cell cycle regulators such as cyclins, cyclin-dependent kinases, or retinoblastoma protein play important roles in the differentiation of adipocytes. In the present paper, we investigated the role of cyclin G2 as a positive regulator of adipogenesis. Cyclin G2 is an unconventional cyclin which expression is up-regulated during growth inhibition or apoptosis. Using the 3T3-F442A cell line, we observed an up-regulation of cyclin G2 expression at protein and mRNA levels throughout the process of cell differentiation, with a further induction of adipogenesis when the protein is transiently overexpressed. We show here that the positive regulatory effects of cyclin G2 in adipocyte differentiation are mediated by direct binding of cyclin G2 to peroxisome proliferator-activated receptor γ (PPARγ), the key regulator of adipocyte differentiation. The role of cyclin G2 as a novel PPARγ coactivator was further demonstrated by chromatin immunoprecipitation assays, which showed that the protein is present in the PPARγ-responsive element of the promoter of aP2, which is a PPARγ target gene. Luciferase reporter gene assays, showed that cyclin G2 positively regulates the transcriptional activity of PPARγ. The role of cyclin G2 in adipogenesis is further underscored by its increased expression in mice fed a high-fat diet. Taken together, our results demonstrate a novel role for cyclin G2 in the regulation of adipogenesis.


Sign in / Sign up

Export Citation Format

Share Document