cyclin g2
Recently Published Documents


TOTAL DOCUMENTS

65
(FIVE YEARS 12)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Sen Li ◽  
Chenyang Zhao ◽  
Jinlan Gao ◽  
Xinbin Zhuang ◽  
Shuang Liu ◽  
...  

Abstract Background Expression of aberrant cyclin G2 is a key factor contributing to cancer biological processes, including glioma. However, the potential underlying mechanisms of cyclin G2 in the glioma tumor immune microenvironment remain unclear. Methods Co-immunoprecipitation (co-IP), in situ proximity ligation assay (PLA), and in vitro kinase assay were conducted to reveal the underlying mechanism by which cyclin G2 regulates Y10 phosphorylation of LDHA. Further, the biological roles of cyclin G2 in cell proliferation, migration, invasion capacity, apoptosis, glycolysis, and immunomodulation were assessed through in vitro and in vivo functional experiments. Expressions of cyclin G2 and Foxp3 in glioma specimens was determined by immunohistochemistry. Results In this study, we found that cyclin G2 impeded the interaction between LDHA and FGFR1, thereby decreasing Y10 phosphorylation of LDHA through FGFR1 catalysis. Cyclin G2 inhibited proliferation, migration, invasion capacity, and glycolysis and promoted apoptosis glioma cells via suppressing Y10 phosphorylation of LDHA. Moreover, we further verified that cyclin G2 reversed the immunosuppressive to antitumor immune microenvironment through inhibiting lactate production by glioma cells. Besides, cyclin G2 potentiated PD-1 blockade and exerted strong antitumor immunity in the glioma-bearing mice model. Conclusions Cyclin G2 acts as a potent tumor suppressor in glioma and enhances responses to immunotherapy. Our findings may be helpful in selecting glioma patients for immunotherapy trials in the future.


2021 ◽  
Vol 9 (6) ◽  
pp. 446-446
Author(s):  
Di Zhang ◽  
Jin-Lan Gao ◽  
Chen-Yang Zhao ◽  
Dan-Ning Wang ◽  
Xue-Sha Xing ◽  
...  

Author(s):  
Hongyou Zhao ◽  
Bin Yi ◽  
Zhipin Liang ◽  
Ches’Nique Phillips ◽  
Hui-Yi Lin ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Manni Sun ◽  
Shenghuan Liu ◽  
Jinlan Gao ◽  
Tao Meng ◽  
Xuesha Xing ◽  
...  

2020 ◽  
Author(s):  
Danning Wang ◽  
Jinlan Gao ◽  
Chenyang Zhao ◽  
Sen Li ◽  
Di Zhang ◽  
...  

AbstractThe cell cycle protein cyclin G2 is considered a tumor suppressor. However, its regulatory effects and potential mechanisms in oral cancers are not well understood. This study aimed to investigate the effect of cyclin G2 on oral squamous cell carcinoma (OSCC). The data from 80 patients with OSCC were utilized to predict the abnormal expression of cyclin G2. The proliferation and metastasis were determined by a cell counting Kit-8 assay, flow cytometry, a wound-healing assay and a cell invasion assay. The expression of key proteins and genes associated with the cyclin G2 signaling pathways was determined by western blotting and real-time PCR, respectively. The orthotopic nude mice model was established by a mouth injection of SCC9 cells overexpressing cyclin G2. We showed that the low level of cyclin G2 in OSCC, which is negatively correlated with clinical staging, was a negative prognostic factor for the disease. We also found that cyclin G2 inhibited the proliferation, metastasis and blocked the cell cycle at G1/S of OSCC cells, suggesting that cyclin G2 has an inhibitory effect in OSCC. Mechanistically, cyclin G2 inhibited the growth and metastasis of OSCC by binding to insulin-like growth factor binding protein 3 (IGFBP3) and regulating the focal adhesion kinase (FAK) -SRC-STAT signal transduction pathway. Cyclin G2 competed with integrin to bind to IGFBP3; the binding between integrin and IGFBP3 was reduced after cyclin G2 overexpression, thereby inhibiting the phosphorylation of FAK and SRC. These results showed that cyclin G2 inhibited the progression of OSCC by interacting with IGFBP3 and that it may be a new target for OSCC treatment.


IUBMB Life ◽  
2020 ◽  
Vol 72 (7) ◽  
pp. 1491-1503 ◽  
Author(s):  
Qiang Huang ◽  
Chi‐Yao Hsueh ◽  
Yang Guo ◽  
Xiu‐Fa Wu ◽  
Jiao‐Yu Li ◽  
...  

2019 ◽  
Vol 20 (8) ◽  
pp. 1810 ◽  
Author(s):  
Mohamed Salem ◽  
Yanan Shan ◽  
Stefanie Bernaudo ◽  
Chun Peng

Ovarian cancer is the leading cause of death from gynecological cancers. MicroRNAs (miRNAs) are small, non-coding RNAs that interact with the 3′ untranslated region (3′ UTR) of target genes to repress their expression. We have previously reported that miR-590-3p promoted ovarian cancer growth and metastasis, in part by targeting Forkhead box A (FOXA2). In this study, we further investigated the mechanisms by which miR-590-3p promotes ovarian cancer development. Using luciferase reporter assays, real-time PCR, and Western blot analyses, we demonstrated that miR-590-3p targets cyclin G2 (CCNG2) and Forkhead box class O3 (FOXO3) at their 3′ UTRs. Silencing of CCNG2 or FOXO3 mimicked, while the overexpression of CCNG2 or FOXO3 reversed, the stimulatory effect of miR-590-3p on cell proliferation and invasion. In hanging drop cultures, the overexpression of mir-590 or the transient transfection of miR-590-3p mimics induced the formation of compact spheroids. Transfection of the CCNG2 or FOXO3 plasmid into the mir-590 cells resulted in the partial disruption of the compact spheroid formation. Since we have shown that CCNG2 suppressed β-catenin signaling, we investigated if miR-590-3p regulated β-catenin activity. In the TOPFlash luciferase reporter assays, mir-590 increased β-catenin/TCF transcriptional activity and the nuclear accumulation of β-catenin. Silencing of β-catenin attenuated the effect of mir-590 on the compact spheroid formation. Taken together, these results suggest that miR-590-3p promotes ovarian cancer development, in part by directly targeting CCNG2 and FOXO3.


Sign in / Sign up

Export Citation Format

Share Document