scholarly journals The effect of soil compaction at various depths on root and shoot growth of oats.

1974 ◽  
Vol 22 (3) ◽  
pp. 133-142
Author(s):  
J.J. Schuurman ◽  
J.J.H. de Boer

The effect of a loose topsoil of 23-63 cm depth overlying a dense subsoil of 35-75 cm depth on root and shoot development was compared with the effect of a homogeneous column of loose soil of 98 cm depth. Shoot weights and, to a large extent root weights, were similar during early growth, but, at later stages, they were higher in the heterogeneous soil columns. Throughout growth, root weights were greater in loose topsoil of the heterogeneous soil columns than in the corresponding layer of the homogeneous columns. Total root weights were higher in the homogeneous columns up to May 23rd, but, at later dates they were higher in the heterogeneous columns. Decreases in root weight at the boundary zone between the layers were mainly due to decreased root branching and, secondarily, to decreased root number. Rooting depth in the dense subsoil increased with increasing thickness of the topsoil, and probably with increasing depth of the water table. Shoot/root ratios at later growth stages were highest for the heterogeneous columns with thin top-soil layers, indicating the presence of favourable growing conditions despite restricted root development. This was confirmed by water consumption data. (Abstract retrieved from CAB Abstracts by CABI’s permission)

1981 ◽  
Vol 32 (4) ◽  
pp. 565 ◽  
Author(s):  
AR Harradine ◽  
RDB Whalley

Establishing plants of Aristida ramosa R.Br. and Danthonia linkii Kunth grown in root observation tubes differed markedly in their root growth and root morphology. Radicle extension of A. ramosa proceeded far more rapidly than that of D. linkii, and root branching occurred earlier and to a much greater extent in D. linkii. From 2 months after germination onwards, the maximum rooting depth of A. vamosa was greater than that of D. linkii, although total root dry weights for the two species were not significantly different. At 25 weeks from germination, 48 % of the root dry weight of D. linkii was present in the 0-10 cm level of the soil profile, while the corresponding figure for A. ramosa was 33 %. Root weight and rooting depth of both species were severely reduced by foliage clipping at weekly or monthly intervals, with roots being more sensitive to clipping than shoots. Clipping led to a concentration of root mass in the 0-10 cm level. The rapidly establishing seedling root system of A. vamosa would give it a competitive advantage over D. linkii in the environment of the north-western slopes of New South Wales. The results of the clipping trial suggest that grazing management may be manipulated to alter the relative abundance of A. ramosa and D. linkii in native pastures.


Author(s):  
Letizia Mondani ◽  
Giorgio Chiusa ◽  
Paola Battilani

Fusarium proliferatum has been reported as the main causal agent of garlic dry rot during the postharvest stage, but information on this fungus during the crop growth stage is lacking. We focused on the cropping season of garlic (Allium sativum L.) in the field, until its harvest, with the aim of clarifying the role of F. proliferatum in bulb infection as well as the impact of crop growing conditions on pathogen-plant interaction. Studies were conducted in Piacenza (northern Italy) for three seasons from 2016 to 2019. Six garlic farms were sampled. A different field was sampled every year. Soil samples were recovered at sowing time for the counting of fungal colony forming units (CFU). Plant samples were collected at three growth stages, from BBCH 15 (fifth leaf visible) to BBCH 49 (ripening), for which disease severity assessment and fungi isolations were performed. Fusarium was the most frequently isolated genus, of which F. proliferatum and F. oxysporum were the dominant species. F. proliferatum registered the highest incidence in all the farms tested, but F. oxysporum was dominant in the first year of the study. F. oxysporum incidence was correlated with dry weather, whereas F. proliferatum was correlated with rainy weather. In conclusion, our result confirms the association of F. proliferatum with garlic bulbs from the crop’s early growth stages, suggesting potential seed transmission as a source of this fungal pathogen. Further studies should investigate the link between fusaria occurrence in the field and dry rot outbreaks occurring postharvest and during storage of garlic.


2003 ◽  
Vol 30 (6) ◽  
pp. 699 ◽  
Author(s):  
Eric Lebon ◽  
Vincent Dumas ◽  
Philippe Pieri ◽  
Hans R. Schultz

A geometrical canopy model describing radiation absorption (Riou et al. 1989, Agronomie 9, 441–450) and partitioning between grapevines (Vitis vinifera L.) and soil was coupled to a soil water balance routine describing a bilinear change in relative transpiration rate as a function of the fraction of soil transpirable water (FTSW). The model was amended to account for changes in soil evaporation after precipitation events and subsequent dry-down of the top soil layer. It was tested on two experimental vineyards in the Alsace region, France, varying in soil type, water-holding capacity and rooting depth. Simulations were run over four seasons (1992–1993, 1995–1996) and compared with measurements of FTSW conducted with a neutron probe. For three out of four years, the model simulated the dynamics in seasonal soil water balance adequately. For the 1996 season soil water content was overestimated for one vineyard and underestimated for the other. Sensitivity analyses revealed that the model responded strongly to changes in canopy parameters, and that soil evaporation was particularly sensitive to water storage of the top soil layer after rainfall. We found a close relationship between field-average soil water storage and pre-dawn water potential, a relationship which could be used to couple physiological models of growth and / or photosynthesis to the soil water dynamics.


1994 ◽  
Vol 74 (3) ◽  
pp. 531-537 ◽  
Author(s):  
T. Harrison ◽  
J. T. Romo

Regrowth and production of tillers in smooth bromegrass (Bromus inermis Leyss.) following defoliation to a 5-cm stubble height were monitored throughout the summer and in early spring the following year in central Saskatchewan. After defoliation, while smooth bromegrass was vegetative, forage began accumulating in 45–75 growingdegree-days (GDD) when moisture was favorable. Regrowth ranged from 34 to 84 g m−2. Plants also produced ≤ 51 g m−2 of regrowth when defoliated at or before culm elongation in a year with above-average precipitation. In two dry years, regrowth was minimal and plants did not regrow after defoliation in the later vegetative growth stages; however, new leaves were produced within 110–140 GDD. Following defoliation at early vegetative growth stages, 1030–1180 GDD were needed to reach maximum regrowth. Total annual production was either unaffected or reduced by defoliation. Total annual production ranged from 35 to 139 g m−2, with yields lowest when defoliated in early May or early June and highest when herbage was removed in mid-May or near flowering and seed production. When plants were defoliated during vegetative growth most tillers were produced the following spring, whereas when plants were defoliated during reproductive phases the majority of tillers emerged in the fall. The year after defoliation, the density of tillers (871–951 m−2) was not significantly different among treatments. Regrowth following defoliation cannot be related to a particular growth stage, but rather it depends on growing conditions. If smooth bromegrass is defoliated once and rested until the next year, it should be recovered by early spring and its productivity should be unaffected. Key words: Etiolated growth, forage production, grazing management, regrowth, rest requirement, tillering


2016 ◽  
Vol 50 (6) ◽  
Author(s):  
Parvaze A. Sofi ◽  
Iram Saba

The present study was undertaken to assess the response of common bean under drought in respect of root traits and biomass partitioning in fifteen common bean genotypes. The basal root whorl number and the number of basal roots was highest in case of WB-185 and lowest in case of SR-1, whereas, the basal root growth angle was highest in case of WB-258 and lowest in case of WB-249. Rooting depth measured as the length of longest root harvested was highest in case of WB-6 (66.2) while as lowest value was recorded for WB-112 (20.4). Dry root weight was highest in case of WB-216 (0.45) and lowest value was recorded for WB-341 (0.22). Similarly leaf biomass was highest in case of WB-6 (0.58) followed by WB-216 (0.58) and the lowest value recorded for WB-1186 (0.12). Shoot dry weight was highest for WB-6 (0.55) followed by WB-216 (0.44) and the lowest value recorded for WB-1186 (0.118). Pod dry weight was highest for WB-489 (2.28) followed by WB-216 (2.19) and the lowest value recorded for WB-83 (0.68).489. Root biomass proportion was highest for WB-195 (18.34) and lowest for WB-489 (10.00). Similarly leaf biomass to total biomass was highest in case of WB-83 (23.19) whereas lowest value was recorded for WB-1186 (7.60). Highest stem biomass proportion was recorded for Arka Anoop (19.19) and the lowest value was recorded for WB-1186 (7.591). Biomass allocation to pods was highest in case of WB-489 (69.92) followed by WB-1186 (68.69) whereas lowest value was recorded for WB-83 (45.40).


2009 ◽  
Vol 89 (5) ◽  
pp. 883-893 ◽  
Author(s):  
Y T Gan ◽  
C A Campbell ◽  
H H Janzen ◽  
R Lemke ◽  
L P Liu ◽  
...  

Crop roots transport water and nutrients to the plants, produce nutrients when they decompose in soil, and provide organic C to facilitate the process of C sequestration in the soil. Many studies on these subjects have been published for cereal crops, but little is known for oilseed and pulse crops. This study was conducted at Swift Current, Saskatchewan, in 2006 and 2007 to characterize the root growth and distribution profile in soil for selected oilseed and pulse crops. Three oilseed [canola (Brassica napus L.), mustard (Brassica juncea L.), flax (Linum usitatissimum L.)], three pulse crops [chickpea (Cicer arietinum L), dry pea (Pisum sativum L.) lentil (Lens culinaris Medik.)], and spring wheat (Triticum aestivum L.) were grown in 100 cm deep × 15 cm diameter lysimeters pushed into a silt loam soil. Crops were studied under rainfed and irrigated conditions. Lysimeters were removed from the field and sampled for above-ground (AG) and root mass at different depths at five growth stages. Root mass was highest for canola (1470 kg ha-1) and wheat (1311 kg ha-1), followed by mustard (893 kg ha-1) and chickpea (848 kg ha-1), and was lowest for dry pea (524 kg ha-1) and flax (440 kg ha-1). The root mass of oilseeds and pulses reached a maximum between late-flowering and late-pod stages and then decreased to maturity, while wheat root mass decreased to maturity after reaching a maximum at boot stage. On average, about 77 to 85% of the root mass was located in the 0-40 cm depth. Canola, mustard, and wheat rooted to 100 cm, while the pulses and flax had only 4 to 7% of the root mass beyond the 60 cm depth. Irrigation only increased root mass in the 0-20 cm depth. Roots developed more rapidly than AG biomass initially, but the ratio of root biomass to AG biomass decreased with plant maturity. At maturity, the ratio of root biomass to AG biomass was 0.11 for dry pea, and between 0.20 and 0.22 for the other crops tested. Our findings on rooting depths and root mass distribution in the soil profile should be useful for modelling water and nutrient uptake by crops, estimating C inputs into soil from roots, and developing diverse cropping systems with cereals, oilseeds and pulses for semiarid environments.Key words: Root growth, root biomass, rooting depth, chickpea, lentil, pea, canola, mustard, flax, root:shoot ratio


1994 ◽  
Vol 17 (5) ◽  
pp. 317-324 ◽  
Author(s):  
Renduo Zhang ◽  
Kangle Huang ◽  
Jiannan Xiang

HortScience ◽  
2010 ◽  
Vol 45 (12) ◽  
pp. 1882-1884 ◽  
Author(s):  
Kenneth B. Marcum ◽  
Mohammad Pessarakli

Relative salinity tolerance of 32 perennial (Lolium perenne L.) and three intermediate (Lolium ×hybridum Hausskn.) ryegrass turf cultivars was determined by measuring turf leaf clipping dry weight, root weight, rooting depth, and percent green leaf canopy area relative to control (non-salinized) plants. After gradual acclimation, grasses were exposed to moderate salinity stress (6 dS·m−1) for 6 weeks through solution culture in a controlled environment greenhouse. Shoot parameters were highly correlated, being mutually effective predictors of salinity tolerance. After 6 weeks of salinity stress, percent green leaf canopy area (GL) was correlated with relative (to control) final week leaf clipping weight (LWREL) (r = 0.90) and with linear slope of decline of weekly leaf clipping weight over the 6-week exposure to salinity (LWSLOPE) (r = 0.66). Rooting parameters root dry weight (RW) and rooting depth (RD), although significantly correlated with all shoot parameters, were only moderately effective in predicting relative salinity tolerance. ‘Paragon’ was the most salt-tolerant as indicated by all parameters. Other salt-tolerant cultivars included Divine and Williamsburg. Intermediate ryegrass cultivars (Froghair, Midway, and Transist) were invariably found within the most salt-sensitive category for all parameters.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 233 ◽  
Author(s):  
Mahmoud F. Seleiman ◽  
Ahmed M. S. Kheir ◽  
Sami Al-Dhumri ◽  
Abdulaziz G. Alghamdi ◽  
El-Said H. Omar ◽  
...  

Irrigation with low water quality can adversely affect soil characteristics, optimal moisture for tillage, and crop productivity, particularly in arid and semi-arid regions. We determined the optimal moisture for tillage processing and the effects of optimal and wet tillage on physical and chemical soil characteristics and wheat productivity after irrigation with different water qualities (waste, saline, and highly saline water). We used the Atterberg limit to determine the suitable moisture content for tillage. Tillage at optimal moisture content improved soil characteristics by reducing soil salinity, sodicity, bulk density, shear strength, compaction, and increasing hydraulic conductivity compared to that of wet tillage. It also enhanced growth and productivity of wheat grown with low quality of water (i.e., fresh and waste water), resulting in higher grain yield and root weight at different growth stages than that of saline and highly saline water. In conclusion, tillage at optimal moisture content alleviates the impact of salinity through improving soil physical and chemical characteristics. Optimum tillage can be applied at 20 and 24 days from the previous irrigation in saline and highly saline soils, respectively. Irrigation with waste water resulted in a higher wheat grain yield than saline and highly saline water.


Sugar Tech ◽  
2019 ◽  
Vol 22 (3) ◽  
pp. 504-517 ◽  
Author(s):  
Ke Shao ◽  
Zhenqing Bai ◽  
Manhong Li ◽  
Chao Yu ◽  
Jinwang Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document