scholarly journals An analysis of some pilot fertilizer experiments on paddy.

1957 ◽  
Vol 5 (4) ◽  
pp. 284-289
Author(s):  
C.T. De Wit

Data from 25 experiments in Burma in 1954-55 are discussed. The soils contain 5-15% clay, 10-30% silt and 0.5-1.5% organic matter and pH (dry samples) ranges from 5.0 to 7.5. Yields increase only 11.7 kg per kg of N applied. Placement in rows below the aerobic mud layer would probably double N recovery at rates of 20 kg/ha N. The estimated response to P placement (5.4 kg per kg applied P) is uneconomic. With applications of 22.4 kg/ha N, but not with 44.8 kg/ha, N uptake was increased by applying P. (Abstract retrieved from CAB Abstracts by CABI’s permission)

1987 ◽  
Vol 67 (3) ◽  
pp. 639-646 ◽  
Author(s):  
J. S. TOMAR ◽  
R. J. SOPER

The effects of N placement and organic matter amendments on plant uptake and immobilization of N from 15N-labeled urea were investigated in a growth chamber employing two successive crops of rapeseed (Brassica napus L.). Immature barley (Hordeum vulgare L.) (C:N ratio 20.9) and fababean (Vicia faba L.) (C:N ratio 21.8) plant residues, and sucrose were mixed throughout the soil at 10 g material kg−1 soil. Urea enriched with 20.2 atom % 15N was either mixed throughout the soil, or placed as a point in the center of the soil at 100 mg N kg−1 soil. The soil was incubated at field capacity for 30 d before the seeding of first crop and 60 d before the second crop. For the first crop of rapeseed, there was a net mineralization of N from the added barley and fababean materials regardless of N application. For total N uptake and dry matter yield of rapeseed, the mixed treatment of urea was superior to the point placement where barley and fababean residues were added. However, due to considerable biological interchange of N with added plant residues in the mixed treatment, 15N uptake was greater for the point placement of added urea (47.3 vs. 26.7%). Sucrose led to considerable net immobilization of N with the result that the point placement of N was superior to mixing for N uptake and 15N recovery. Added N remaining in the soil at harvest time after removal of the first crop's roots varied between 20.0 and 48.8% for the point placed N and between 27.5 and 79.2% for the mixed placement and was largest where sucrose was added. In spite of the large variation in 15N remaining in the soil, plant recovery of residual 15N in the second crop ranged from only 11.3 to 13.8%, except for the point placement of urea with sucrose where the value was 19.3%. Key words: N immobilization, organic residues, residual 15N, tagged urea


Agronomie ◽  
2002 ◽  
Vol 22 (7-8) ◽  
pp. 777-787 ◽  
Author(s):  
Graeme D. Schwenke ◽  
Warwick L. Felton ◽  
David F. Herridge ◽  
Dil F. Khan ◽  
Mark B. Peoples

Biochar ◽  
2021 ◽  
Author(s):  
Jing Peng ◽  
Xiaori Han ◽  
Na Li ◽  
Kun Chen ◽  
Jinfeng Yang ◽  
...  

AbstractCombined application of biochar with fertilizers has been used to increase soil fertility and crop yield. However, the coupling mechanisms through which biochar improves crop yield at field scale and the time span over which biochar affects carbon and nitrogen transformation and crop yield are still little known. In this study, a long-term field trial (2013–2019) was performed in brown soil planting maize. Six treatments were designed: CK—control; NPK—application of chemical fertilizers; C1PK—low biochar without nitrogen fertilizer; C1NPK, C2NPK and C3NPK—biochar at 1.5, 3 and 6 t ha−1, respectively, combined with chemical fertilizers. Results showed that the δ15N value in the topsoil of 0–20 cm layer in the C3NPK treatment reached a peak of 291 ‰ at the third year (2018), and demonstrated a peak of 402 ‰ in the NPK treatment in the initial isotope trial in 2016. Synchronously, SOC was not affected until the third to fourth year after biochar addition, and resulted in a significant increase in total N of 2.4 kg N ha−1 in 2019 in C3NPK treatment. During the entire experiment, the 15N recovery rates of 74–80% were observed highest in the C2NPK and C3NPK treatments, resulting in an annual increase in yields significantly. The lowest subsoil δ15N values ranged from 66‰ to 107‰, and the 15N residual rate would take 70 years for a complete decay to 0.001% in the C3NPK. Our findings suggest that biochar compound fertilizers can increase C stability and N retention in soil and improve N uptake by maize, while the loss of N was minimized. Biochars, therefore, may have an important potential for improving the agroecosystem and ecological balance. Graphic abstract


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 740
Author(s):  
Ken Okamoto ◽  
Shinkichi Goto ◽  
Toshihiko Anzai ◽  
Shotaro Ando

Fertilizer application during sugarcane cultivation is a main source of nitrogen (N) loads to groundwater on small islands in southwestern Japan. The aim of this study was to quantify the effect of reducing the N fertilizer application rate on sugarcane yield, N leaching, and N balance. We conducted a sugarcane cultivation experiment with drainage lysimeters and different N application rates in three cropping seasons (three years). N loads were reduced by reducing the first N application rate in all cropping seasons. The sugarcane yields of the treatment to which the first N application was halved (T2 = 195 kg ha−1 N) were slightly lower than those of the conventional application (T1 = 230 kg ha−1 N) in the first and third seasons (T1 = 91 or 93 tons ha−1, T2 = 89 or 87 tons ha−1). N uptake in T1 and T2 was almost the same in seasons 1 (186–188 kg ha−1) and 3 (147–151 kg ha−1). Based on the responses of sugarcane yield and N uptake to fertilizer reduction in two of the three years, T2 is considered to represent a feasible fertilization practice for farmers. The reduction of the first N fertilizer application reduced the underground amounts of N loads (0–19 kg ha−1). However, application of 0 N in the first fertilization would lead to a substantial reduction in yield in all seasons. Reducing the amount of N in the first application (i.e., replacing T1 with T2) improved N recovery by 9.7–11.9% and reduced N leaching by 13 kg ha−1. These results suggest that halving the amount of N used in the first application can improve N fertilizer use efficiency and reduce N loss to groundwater.


2020 ◽  
Vol 456 (1-2) ◽  
pp. 81-98
Author(s):  
Marcus Schlingmann ◽  
Ursina Tobler ◽  
Bernd Berauer ◽  
Noelia Garcia-Franco ◽  
Peter Wilfahrt ◽  
...  

Abstract Aims Consequences of climate change and land use intensification on the nitrogen (N) cycle of organic-matter rich grassland soils in the alpine region remain poorly understood. We aimed to identify fates of fertilizer N and to determine the overall N balance of an organic-matter rich grassland in the European alpine region as influenced by intensified management and warming. Methods We combined 15N cattle slurry labelling with a space for time climate change experiment, which was based on translocation of intact plant-soil mesocosms down an elevational gradient to induce warming of +1 °C and + 3 °C. Mesocosms were subject to either extensive or intensive management. The fate of slurry-N was traced in the plant-soil system. Results Grassland productivity was very high (8.2 t - 19.4 t dm ha−1 yr−1), recovery of slurry 15N in mowed plant biomass was, however, low (9.6–14.7%), illustrating low fertilizer N use efficiency and high supply of plant available N via mineralization of soil organic matter (SOM). Higher 15N recovery rates (20.2–31.8%) were found in the soil N pool, dominated by recovery in unextractable N. Total 15N recovery was approximately half of the applied tracer, indicating substantial loss to the environment. Overall, high N export by harvest (107–360 kg N ha−1 yr−1) markedly exceeded N inputs, leading to a negative grassland N balance. Conclusions Here provided results suggests a risk of soil N mining in montane grasslands, which increases both under climate change and land use intensification.


2017 ◽  
Vol 9 (3) ◽  
pp. 233
Author(s):  
Kyriakos Giannoulis ◽  
Dimitrios Bartzialis ◽  
Elpiniki Skoufogianni ◽  
Nicholaos Danalatos

Panicum virgatum could produce cattle feed with lower costs due to the low input requirements and its perennial nature. Dry biomass yield vs. N-P-K nutrient uptake relations as well as the N-mineralization and the N-fertilization recovery fraction for Panicum virgatum (cv. Alamo) were determined under field conditions for four N-fertilization (0, 80, 160 and 240 kg ha-1) and two irrigation levels (0 and 250 mm), οn two soils in central Greece with rather different moisture status. It was found that the dry fodder yield on the aquic soil may reach 14 t ha-1 using supplemental irrigation; while on the xeric soil a lower yield of 9-10 t ha-1 may be produced only under supplemental irrigation. Moreover, the average N, P and K concentration was 1.3%, 0.14% and 1.3% in leaves, and 0.5%, 0.85%, and 1.5% in stems, respectively, showing the very low crop requirements. Furthermore, linear biomass yield-nutrient uptake relationships were found with high R2, pointing to nutrient use efficiency of 132 and 75 kg kg-1, for N and K respectively. The base N-uptake ranged from 71-74 kg ha-1 on the aquic to 60 kg ha-1 or less on the xeric soil. Finally, it was found that N-recovery fraction was 20% on the aquic soil and lower on the xeric. Therefore, it could be conclude that Panicum virgatum seems to be a very promising crop for fodder production and its introduction in land use systems (especially οn aquic soils of similar environments) should be taken into consideration.


2013 ◽  
Vol 10 (1) ◽  
pp. 67-80 ◽  
Author(s):  
W. R. Hunter ◽  
A. Jamieson ◽  
V. A. I. Huvenne ◽  
U. Witte

Abstract. The Whittard Canyon is a branching submarine canyon on the Celtic continental margin, which may act as a conduit for sediment and organic matter (OM) transport from the European continental slope to the abyssal sea floor. In situ stable-isotope labelling experiments were conducted in the eastern and western branches of the Whittard Canyon, testing short-term (3–7 days) responses of sediment communities to deposition of nitrogen-rich marine (Thalassiosira weissflogii) and nitrogen-poor terrigenous (Triticum aestivum) phytodetritus. 13C and 15N labels were traced into faunal biomass and bulk sediments, and the 13C label traced into bacterial polar lipid fatty acids (PLFAs). Isotopic labels penetrated to 5 cm sediment depth, with no differences between stations or experimental treatments (substrate or time). Macrofaunal assemblage structure differed between the eastern and western canyon branches. Following deposition of marine phytodetritus, no changes in macrofaunal feeding activity were observed between the eastern and western branches, with little change between 3 and 7 days. Macrofaunal C and N uptake was substantially lower following deposition of terrigenous phytodetritus with feeding activity governed by a strong N demand. Bacterial C uptake was greatest in the western branch of the Whittard Canyon, but feeding activity decreased between 3 and 7 days. Bacterial processing of marine and terrigenous OM were similar to the macrofauna in surficial (0–1 cm) sediments. However, in deeper sediments bacteria utilised greater proportions of terrigenous OM. Bacterial biomass decreased following phytodetritus deposition and was negatively correlated to macrofaunal feeding activity. Consequently, this study suggests that macrofaunal–bacterial interactions influence benthic C cycling in the Whittard Canyon, resulting in differential fates for marine and terrigenous OM.


2000 ◽  
Vol 80 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Selamyihun Kidanu ◽  
D. G. Tanner ◽  
Tekalign Mamo

A trial was conducted on an Ethiopian Vertisol from 1990 to 1995 to determine the residual effects of fertiliser N applied to tef [Eragrostistef (Zucc.) Trotter] on the grain and straw yield, N content, and total N uptake of succeeding crops of durum wheat (Triticum turgidum var. durum) and tef. The mean agronomic efficiency of 60 kg fertiliser N ha−1 was 13.1 kg grain kg−1 fertiliser N applied in the current year and 5.4 kg grain kg−1 fertiliser N applied in the previous year. Thus, the residual fertiliser N benefit was equivalent to 41.2% of the response to current season N application for the two cereal crops. The mean rates of apparent recovery of fertiliser N were 65.8% for current season N application and 31.0% for previous season N application. Soil organic matter and nitrate levels increased linearly in response to both previous and current season N application rates. The current study demonstrates that the residual effect of fertiliser N enhanced the yields and N contents of the grain and straw of both wheat and tef, resulting in a significant increase in total N uptake. Any analysis of the profitability of fertiliser N response should reflect the multi-year benefit period. Key words: N recovery, N residue, N uptake, tef, wheat


2009 ◽  
Vol 147 (3) ◽  
pp. 303-312 ◽  
Author(s):  
Q. JING ◽  
H. VAN KEULEN ◽  
H. HENGSDIJK ◽  
W. CAO ◽  
P. S. BINDRABAN ◽  
...  

SUMMARYAbout 0·10 of the food supply in China is produced in rice–wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE.Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N supply.


1999 ◽  
Vol 50 (2) ◽  
pp. 211 ◽  
Author(s):  
D. O. Huett ◽  
G. R. Stewart

The effect of timing of nitrogen (N) application as 15N-enriched ammonium sulfate (50 kg N/ha) on the growth response and N uptake by vegetative and reproductive tissues was investigated in the low-chill peach cv. Flordagem growing on a krasnozem soil at Alstonville. Nitrogen was applied in late August, late September, late October, mid February, and early May. Tree parts were sampled for 15N at 4 and 8 weeks after application and after fruit harvest in December the following season. After fruit yield was measured, trees were excavated and divided into parts for dry weight and nutrient concentration determinations, and fertiliser N recovery and to estimate tree nutrient removal. Nitrogen enrichment was detected in all plant parts within 4 weeks of N application, irrespective of timing, and was greatest in rapidly growing tissues such as laterals, leaves, and fruit. The most rapid (P < 0.05) 15N enrichment in vegetative tissues resulted from September, October, and February N applications and for fruit from a September application. The level of enrichment 4 weeks after fertiliser N application was similar for vegetative and reproductive tissues. The timing of N application in the first season had no effect on fruit yield and vegetative growth the following season. At tree removal, the recovery of fertiliser N in most tree parts increased (P < 0.05) as fertiliser N application was delayed from October to May the previous season. Maximum contribution of absorbed N to whole tree N was 10–11% for laterals, leaf, and fruit. Data from this study indicate that vegetative and reproductive growth have similar demand for absorbed N, and that uptake of fertiliser N is most rapid when an application precedes a period of rapid growth. Over 2 seasons, recovery of applied fertiliser N was 14.9–18.0% in the tree, confirming that stored N and the soil N pool are the dominant sources of tree N. The recovery of fertiliser N from the May application was 18% even though uptake in all tree parts including roots at 4 weeks after application was very low, indicating that tree fertiliser N uptake occurred when growth resumed after the dormant winter period. The low proportion and recovery of fertiliser N in the tree confirm the lack of immediate influence of applied N to vegetative growth and yield. Annual crop nutrient removal is a sound basis for fertiliser recommendations, and for the Flordagem orchard (1000 trees/ha), it consisted of fruit plus 70% of laterals (removed at pruning) plus 20% of leaf. Removal in vegetative tissues was relatively low at (kg/ha) 14 N, 1 P, 12 K, 13 Ca, and 2 Mg. The addition of fruit at a yield of 25 t/ha increased total nutrient removal to (kg/ha) 46 N, 5 P, 54 K, 14 Ca, and 5 Mg.


Sign in / Sign up

Export Citation Format

Share Document