scholarly journals Combined application of biochar with fertilizer promotes nitrogen uptake in maize by increasing nitrogen retention in soil

Biochar ◽  
2021 ◽  
Author(s):  
Jing Peng ◽  
Xiaori Han ◽  
Na Li ◽  
Kun Chen ◽  
Jinfeng Yang ◽  
...  

AbstractCombined application of biochar with fertilizers has been used to increase soil fertility and crop yield. However, the coupling mechanisms through which biochar improves crop yield at field scale and the time span over which biochar affects carbon and nitrogen transformation and crop yield are still little known. In this study, a long-term field trial (2013–2019) was performed in brown soil planting maize. Six treatments were designed: CK—control; NPK—application of chemical fertilizers; C1PK—low biochar without nitrogen fertilizer; C1NPK, C2NPK and C3NPK—biochar at 1.5, 3 and 6 t ha−1, respectively, combined with chemical fertilizers. Results showed that the δ15N value in the topsoil of 0–20 cm layer in the C3NPK treatment reached a peak of 291 ‰ at the third year (2018), and demonstrated a peak of 402 ‰ in the NPK treatment in the initial isotope trial in 2016. Synchronously, SOC was not affected until the third to fourth year after biochar addition, and resulted in a significant increase in total N of 2.4 kg N ha−1 in 2019 in C3NPK treatment. During the entire experiment, the 15N recovery rates of 74–80% were observed highest in the C2NPK and C3NPK treatments, resulting in an annual increase in yields significantly. The lowest subsoil δ15N values ranged from 66‰ to 107‰, and the 15N residual rate would take 70 years for a complete decay to 0.001% in the C3NPK. Our findings suggest that biochar compound fertilizers can increase C stability and N retention in soil and improve N uptake by maize, while the loss of N was minimized. Biochars, therefore, may have an important potential for improving the agroecosystem and ecological balance. Graphic abstract

2017 ◽  
Vol 63 (No. 9) ◽  
pp. 416-421 ◽  
Author(s):  
Peng Weifu ◽  
Zeng Yongjun ◽  
Shi Qinghua ◽  
Huang Shan

Soil organic carbon (SOC) plays a critical role in rice production, but its feedback to the fate of fertilizer nitrogen (N) is not clear. In this study, a pot experiment was conducted to investigate the responses of rice yield and the fate of fertilizer N to different SOC levels using <sup>15</sup>N-labelled urea. The results showed that rice biomass, yield and the total N uptake increased significantly with increasing SOC content. Both rice N uptake from soil and urea increased significantly with increasing SOC content. The recovery rate and residual rate of fertilizer N improved significantly with increasing SOC content, leading to a reduced rate of not-specified fertilizer N. Therefore, it was concluded that high SOC could not only improve rice yield and fertilizer N recovery, but also could increase the retention of fertilizer N and decrease the not-specified N in the paddy soil.


2000 ◽  
Vol 80 (1) ◽  
pp. 63-69 ◽  
Author(s):  
Selamyihun Kidanu ◽  
D. G. Tanner ◽  
Tekalign Mamo

A trial was conducted on an Ethiopian Vertisol from 1990 to 1995 to determine the residual effects of fertiliser N applied to tef [Eragrostistef (Zucc.) Trotter] on the grain and straw yield, N content, and total N uptake of succeeding crops of durum wheat (Triticum turgidum var. durum) and tef. The mean agronomic efficiency of 60 kg fertiliser N ha−1 was 13.1 kg grain kg−1 fertiliser N applied in the current year and 5.4 kg grain kg−1 fertiliser N applied in the previous year. Thus, the residual fertiliser N benefit was equivalent to 41.2% of the response to current season N application for the two cereal crops. The mean rates of apparent recovery of fertiliser N were 65.8% for current season N application and 31.0% for previous season N application. Soil organic matter and nitrate levels increased linearly in response to both previous and current season N application rates. The current study demonstrates that the residual effect of fertiliser N enhanced the yields and N contents of the grain and straw of both wheat and tef, resulting in a significant increase in total N uptake. Any analysis of the profitability of fertiliser N response should reflect the multi-year benefit period. Key words: N recovery, N residue, N uptake, tef, wheat


2019 ◽  
Vol 99 (3) ◽  
pp. 345-355
Author(s):  
Richard E. Engel ◽  
Carlos M. Romero ◽  
Patrick Carr ◽  
Jessica A. Torrion

Fertilizer NO3-N may represent a benefit over NH4-N containing sources in semiarid regions where rainfall is often not sufficient to leach fertilizer-N out of crop rooting zones, denitrification concerns are not great, and when NH3 volatilization concerns exist. The objective of our study was to contrast plant-N derived from fertilizer-15N (15Ndff), fertilizer-15N recovery (F15NR), total N uptake, grain yield, and protein of wheat (Triticum aestivum L.) from spring-applied NaNO3 relative to urea and urea augmented with urease inhibitor N-(n-butyl)thiophosphoric triamide (NBPT). We established six fertilizer-N field trials widespread within the state of Montana between 2012 and 2017. The trials incorporated different experimental designs and 15N-labeled fertilizer-N sources, including NaNO3, NH4NO3, urea, and urea + NBPT. Overall, F15NR and 15Ndff in mature crop biomass were significantly greater for NaNO3 than urea or urea + NBPT (P < 0.05). Crop 15Ndff averaged 53.8%, 43.9%, and 44.7% across locations for NaNO3, urea, and urea + NBPT, respectively. Likewise, crop F15NR averaged 52.2%, 35.8%, and 38.6% for NaNO3, urea, and urea + NBPT, respectively. Soil 15N recovered in the surface layer (0–15 cm) was lower for NaNO3 compared with urea and urea + NBPT. Wheat grain yield and protein were generally not sensitive to improvements in 15Ndff, F15NR, or total N uptake. Our study hypothesis that NaNO3 would result in similar or better performance than urea or urea + NBPT was confirmed. Use of NO3-N fertilizer might be an alternative strategy to mitigate fertilizer-N induced soil acidity in semiarid regions of the northern Great Plains.


2007 ◽  
Vol 43 (2) ◽  
pp. 149-161 ◽  
Author(s):  
SONU SINGH ◽  
NANDITA GHOSHAL ◽  
K. P. SINGH

A two-year study was undertaken in a tropical dryland agro-ecosystem to evaluate the effect of the application of soil amendments with contrasting chemical natures on crop productivity, grain yield, N-uptake and N-use efficiencies. The treatments involved the addition of equivalent amounts of N (80 kg N ha−1) through chemical fertilizer and three organic inputs at the beginning of the annual cycle: Sesbania aculeata shoots (high quality, C/N 16), wheat straw (low quality, C/N 82) and Sesbania+wheat straw (high and low quality combined, C/N 47), together with a control treatment. Test crops consisted of an annual sequence of rice and barley, sown in the rainy and winter seasons, respectively. Fertilizer and Sesbania inputs resulted in higher total net productivity (TNP) for the rice crop (47 % and 32 % increases over the control, respectively) than the combined (+28 %) and wheat straw treatments (+10 %). During the succeeding barley crop, maximum TNP was recorded in the Sesbania+wheat straw treatment (+52 %), followed by wheat straw (+43 %), fertilizer (+19 %) and Sesbania (+17 %). The TNP and grain yields of both crops added together were higher in Sesbania+wheat straw and fertilizer treatments compared to a single applications of either Sesbania or wheat straw. The Sesbania+wheat straw and fertilizer treatments resulted in more efficient utilization of N compared to the other treatments. Crop roots played a pivotal role in N-recovery from the soil and their N concentrations differed significantly (p < 0.05) due to the application of soil amendments. Across different treatments, crop root biomass was strongly correlated with crop N-uptake (r = 0.81, n = 10, p < 0.05), recovery efficiency (r = 0.81, n = 8, p < 0.05) and agronomic efficiency (r = 0.81, n = 8, p < 0.05). It is suggested that the combined application of high and low quality resources modulated N release, resulting in relatively higher productivity through the annual cropping cycle. Such combined inputs may prove useful in developing low input, environment friendly soil management practices in tropical dryland agro-ecosystems.


1994 ◽  
Vol 122 (3) ◽  
pp. 385-391 ◽  
Author(s):  
K. F. Ng Kee Kwong ◽  
J. Deville

SUMMARYThe patterns of N uptake and dry matter synthesis by sugarcane (Saccharum hybrid spp.) were studied at four locations in Mauritius with 15N–labelled ammonium sulphate (100 kg N/ha) applied either in a single dressing in September or in two split applications in September and the following February. More than 80% of the total N recovered at harvest (100–120 kgN/ha) was absorbed by the sugarcane during an active uptake period from October to January. Split application prolonged this active N uptake until April only and had no effect on dry matter accumulation. While total Nabsorbed by above-ground sugarcane showed no decline over time, 10–20 kg N/ha of the 15N–labelled N was lost from the green tops even when the N was applied on two occasions. The fertilizer N losses from above-ground sugarcane were, however, not evident when fertilizer N recovery with time was studied by the difference method. In view of the observed losses of fertilizer N from the aerial parts of sugarcane, measurement of fertilizer N recovery at harvest by the N isotope dilution technique underestimates fertilizer N uptake by sugarcane and attributes too large a fraction of N loss to denitrification/volatilization of NH3.


2009 ◽  
Vol 89 (4) ◽  
pp. 403-411 ◽  
Author(s):  
S S Malhi ◽  
Y K Soon ◽  
S Brandt

Growing season rainfall affects fertilizer N recovery, particularly in semi-arid environments. However, the influence of rainfall distribution during the growing season is not well-understood. We conducted a 7-yr study (from 1997 to 2006) to assess this effect, and that of no-till (NT) vs. conventional tillage (CT), on fertilizer N recovery by spring wheat (Triticum aestivum L.) fertilized with 15N-labelled urea at 40 kg N ha–1 and grown on stubble on a Dark Brown Chernozem soil in Saskatchewan, Canada. Two of the seven experimental years had growing season rainfall close to normal, one was above normal and four were below normal. Tillage treatment did not affect 15N recovery by wheat; however, 15N recovery in the top 15 cm of soil averaged 47% under NT vs. 39% under CT (P = 0.02). Total N and 15N uptakes were most affected by "year" due to variation in growing season rainfall distribution. Excluding an ultra-low value of 3.8% (or 1.5 kg N ha–1) in 2002, due to extreme drought, 15N recovery by wheat averaged 47.5% (range 30–57%), and percent N derived from fertilizer was 12–20%. Rainfall in May correlated significantly with 15N and total N uptake (r = 0.605 and 0.699, respectively). The recovery of 15N in wheat head correlated negatively with June rainfall (r = –0.624), probably because more moisture increased soil N mineralization, which diluted the 15N pool. During grain filling, soil N uptake was 12–30 kg ha–1, compared with negligible amounts (< 7%) of 15N; however, about 15 kg ha–1 of 15N were remobilized vs. 34–74 kg ha–1 of soil N. It is concluded that, in this semi-arid region, fertilizer N uptake is influenced more by rainfall in May than other months of the growth period.Key words: 15N-labelled urea, fertilizer N recovery, N uptake, rainfall, remobilized N, tillage


2003 ◽  
Vol 83 (5) ◽  
pp. 497-505 ◽  
Author(s):  
A. N’Dayegamiye ◽  
S. Huard ◽  
Y. Thibault

Mixed paper mill sludges are an important source of N for crop production. An estimate of direct and residual N recovery is necessary for their efficient management. A 3-yr field study (1997-1999) was conducted in central Quebec, Canada, to evaluate mixed paper mill sludges (PMS) effects on corn (Zea mays L.) yields and N nutrition, N recovery and N efficiency. The effects of PMS on soil NO3-N and total N levels were also determined. The study was situated on a silt loam Baudette soil (Humic Gleysol). The treatments included 3 PMS rates (30, 60 and 90 t ha-1 on wet basis) applied alone or in combination with N fertilizer (90 and 135 kg N ha-1, respectively, for 60 and 30 t ha-1). Treatments also included a control without PMS or N fertilizer, and a complete mineral N fertilizer (180 kg N ha-1) as recommended for corn. The previous plots were split beginning with the second year of the experiment, for annual and biennal PMS applications. Similar treatments as above were made on an adjacent site to evaluate N recovery under climatic conditions in 1999. In all years, PMS applied alone significantly increased corn yields by 1.5–5 t ha-1, compared to the unfertilized control. However, corn yields and N uptake were highest from the application of PMS in combination with N fertilizer. Biennial PMS applications at 60 to 90 ha-1 significantly increased corn yields and N uptake, which suggest high PMS residual effect; however, these increases were lower than those obtained with annual PMS applications. The N efficiency varied in 1997 from 13.0 to 15.4 kg grain kg N-1 for mineral N fertilizer and ranged from 3 to 13.7 kg grain kg N-1 for PMS, decreasing proportionally to increasing PMS rates. Apparent N recovery ranged from 1 3 to 19% in 1997 and from 10 to 14% in the residual year (1998), compared to 30 and 49%, respectively, for mineral N fertilizer. Depending on the PMS rate, N recovery varied from 13 to 21% in 1999. The results indicate high N supplying capacity and high r esidual N effects of PMS, which probably influenced corn yields and N nutrition. Annual PMS applications alone or combined with mineral N fertilizer had no significant effect on soil NO3-N and total N levels. This study demonstrates that application of low PMS rate (30 t ha-1) combined with mineral N fertilizer could achieve high agronomic, economic and environmental benefits on farms. Key words: Mixed paper mill sludges, corn yields, N uptake, N efficiency, residual effects, soil N


2008 ◽  
Vol 18 (1) ◽  
pp. 57 ◽  
Author(s):  
T. TONTTI ◽  
A. NYKÄNEN ◽  
M. KUISMA

Two field experiments, conventional grass ley and organic grass-clover ley, were established with barley as a nurse crop in spring 2000 and given either low or high fertilization with mineral fertilizer (Mineral) or composts. The compost types were municipal biowaste (Biowaste), biowaste + sewage sludge (BioSludge) and cattle manure (Manure). Plant yields and nitrogen (N) uptakes were measured for three years and efficiency of N utilization was estimated. In single application of compost, the total N was mainly in organic form and less than 10% was in inorganic form. Along with increasing amount of inorganic N applied in compost, the yield, N uptake and N recovery increased during the application year. The highest compost N recovery in the application year was 12%, found with Biowaste. In the following years the highest N recovery was found where the lowest total N had been applied. Clover performance was improved in the organic grass-clover ley established with BioSludge fertilization, producing total ley yield comparable with Manure compost. High total N application in composts caused high N surplus and low N use efficiency over three years. Generally, moderate compost fertilization is suitable for ley crops when supplemented with mineral N fertilizer or clover N fixation.;


1997 ◽  
Vol 77 (1) ◽  
pp. 67-76 ◽  
Author(s):  
B. J. Zebarth ◽  
J. W. Paul

Spring soil nitrate and ammonium dynamics in south coastal British Columbia soils were examined with respect to the potential to develop a soil nitrate test for silage corn (Zea mays, L.). Soil nitrate and ammonium contents were measured to 90 cm depth in two soils from April to July of two growing seasons. Treatments included a control, spring application of either 300 or 600 kg total N ha−1 as liquid dairy manure, or 200 kg N ha−1 as inorganic fertilizer. Significant amounts of ammonium were present until late May following manure and until mid-June following fertilizer application, requiring simultaneous determination of both nitrate and ammonium concentrations to assess soil inorganic N contents during this period. Most of the changes in soil nitrate over time occurred in the top 30 cm, suggesting that sampling to 30 cm depth would be sufficient in most cases for a soil nitrate test in this region. Most of the increase in soil inorganic N associated with the spring application of manure occurred by 1 June. A soil nitrate test in early to mid-June when the corn is at the six leaf stage appeared to be most suitable for use in south coastal British Columbia to determine if additional fertilizer N is required. A sample taken at this time will measure soil nitrate contents just before the period of rapid corn N uptake, after most of the additional inorganic N associated with spring manure application is already present in the soil as nitrate, and after nitrification of the manure ammonium has occurred. Key words: N recovery, preplant nitrate test, pre-sidedress soil nitrate test


Sign in / Sign up

Export Citation Format

Share Document