scholarly journals Differential biofilm formation and chemical disinfection resistance of Escherichia coli on stainless steel and polystyrene tissue culture plate

Author(s):  
Anas Muazu ◽  
Nor Rahman ◽  
Sani Aliyu ◽  
Umar Abdullahi ◽  
Ahmed Umar ◽  
...  
Author(s):  
Bedobroto Biswas ◽  
Naik Shalini Ashok ◽  
Deepesh Nagarajan ◽  
Md Zaffar Iqubal

Aims: Identification and grading of the Escherichia coli according to their biofilm production capability. Study Design:  Cross-sectional study. Place and Duration of Study: This was conducted in Department Microbiology at M.S. Ramaiah Medical college and Hospital, Bengaluru from March 2017 to August 2017. Methodology: A total of 55 non repetitive Escherichia coli isolates were identified from various clinical samples like urine, pus ,tissue and peritoneal fluids .All the organisms were isolated in pure culture and biofilm formation was detected in vitro by Gold standard TCP (Tissue culture plate) method. Organisms were incubated for an extended period of 48 hours and the biofilms were detected by acetone alcohol elution method. Organisms were categorized as strong, moderate, weak and no biofilm producers based on the obtained OD value of the elute. Results: Majority of the isolates of Escherichia coli were obtained from catheterized urine culture (67.03%) followed by pus (25.50%).Most of the isolates were capable of forming biofilm in vitro by tissue culture plate method except a few (9.1%). 40% of the isolates were strong biofilm formers which had >4 ODC. 25.5% showed medium biofilm-forming capability and rest 25.5% showed weak biofilm formations in vitro. Conclusion: The ability to form biofilm from a species can give us a better understanding of the biofilm-related infections pertaining to the particular group. Detection of biofilms remains a most important determinant to approximate the incidence of such infections. Categorization of organisms according to their biofilm formation may help us understand the frequency of biofilm-associated infections, and thus take necessary precautions to avoid the problem. Further studies involving the detection of biofilm may be conducted and the tests can be implemented in routine diagnostic microbiology to assess the usefulness of the methods in detection of biofilm-related infections.


Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 630 ◽  
Author(s):  
Aisha M. Alamri ◽  
Afnan A. Alsultan ◽  
Mohammad A. Ansari ◽  
Amani M. Alnimr

This study analyzed the genotype, antibiotic resistance, and biofilm formation of Acinetobacter baumannii strains and assessed the correlation between biofilm formation, antibiotic resistance, and biofilm-related risk factors. A total of 207 non-replicate multi-drug-resistant A. baumannii strains were prospectively isolated. Phenotypic identification and antimicrobial susceptibility testing were carried out. Isolate biofilm formation ability was evaluated using the tissue culture plate (TCP), Congo red agar, and tube methods. Clonal relatedness between the strains was assessed by enterobacterial repetitive intergenic consensus-PCR genotyping. Of the 207 isolates, 52.5% originated from an intensive care unit setting, and pan resistance was observed against ceftazidime and cefepime, with elevated resistance (99–94%) to piperacillin/tazobactam, imipenem, levofloxacin, and ciprofloxacin. alongside high susceptibility to tigecycline (97.8%). The Tissue culture plate, Tube method, and Congo red agar methods revealed that 53.6%, 20.8%, and 2.7% of the strains were strong biofilm producers, respectively, while a significant correlation was observed between biofilm formation and device-originating respiratory isolates (p = 0.0009) and between biofilm formation in colonized vs. true infection isolates (p = 0.0001). No correlation was detected between antibiotic resistance and biofilm formation capacity, and the majority of isolates were clonally unrelated. These findings highlight the urgent need for implementing strict infection control measures in clinical settings.


2018 ◽  
Vol 6 (8) ◽  
pp. 1335-1341 ◽  
Author(s):  
Rania M. Abdel Halim ◽  
Nevine N. Kassem ◽  
Basma S. Mahmoud

AIMS: To evaluate three in vitro phenotypic methods; tissue culture plate, tube method, and Congo red agar for detection of biofilm formation in staphylococci and assess the relation of biofilm formation with methicillin resistance and anti-microbial resistance. METHODS: The study included 150 staphylococcal isolates. Biofilm detection in staphylococci was performed using tissue culture plate, tube method, and Congo red agar. RESULTS: Tissue culture plate, tube method, and Congo red agar detected 74%, 42.7%, and 1.3% biofilm producing staphylococci respectively. S. aureus isolates were more common biofilm producers (53.2%) than CONS (46.8%). Biofilm production in CONS species was highest in S. hemolyticus (57.7%). Tube method was 51.4% sensitive, 82.1% specific. As for Congo red agar, sensitivity was very low (0.9%), but specificity was 97.4%. Biofilm producers were mostly; isolated from blood specimens (82.6%) and detected in methicillin-resistant strains 96/111 (86.5%). They were resistant to most antibiotics except vancomycin and linezolid. CONCLUSIONS: Tissue culture plate is a more quantitative and reliable method for detection of biofilm producing staphylococci compared to tube method and Congo red agar. Hence, it can still be used as a screening method for biofilm detection. Vancomycin and Linezolid are the most sensitive antibiotics among biofilm producing staphylococci.


Author(s):  
Mayuri Gogoi ◽  
Ajanta Sharma

Background: The purpose of this study was to detect biofilm formation by bacterial isolates from patients with device associated infection admitted in intensive care units (ICUs), to compare the three methods used for detection of bioiflm, to compare the antimicrobial susceptibility pattern of the biofilm producers with the non-producers and to study the risk factors associated with biofilm formation.Methods: A total of 115 bacterial isolates from patients with device associated infection admitted in different ICU for a period of one year was included in the study. These clinical isolates were detected for biofilm formation by tissue culture plate method, tube method and Congo red agar method. Kirby-Bauer disc diffusion method of antibiotic susceptibility was performed on all isolates.Results: Out of the 115 bacterial isolates, 71 were biofilm producers. Tissue culture plate method detected the maximum number of biofilm producers (61.7%). The maximum number of biofilm producers were isolated from tracheal aspirate and endotracheal tubes (52.1%) followed by blood (17%) and urine (12.6%) respectively. The predominant biofilm producing isolates were Klebsiella pneumoniae (39.4%), Staphylococcus aureus (19.7%) and Pseudomonas aeruginosa (16.9%). Multi drug resistance among the biofilm producers was significantly higher than the non-biofilm producers (p value=0.0125). The risk of biofilm formation was seen to increase with the increase in duration of hospital stay (p value=0.0092, statistically very significant).Conclusions: From this study it was found that a high degree of biofilm producers were isolated from patients on indwelling devices. Tissue culture plate was found to be the most accurate method. The degree of multidrug resistance among the bioiflm producers was significantly higher than the non-producers.


Author(s):  
Shadi Shadkam ◽  
Hamid Reza Goli ◽  
Bahman Mirzaei ◽  
Mehrdad Gholami ◽  
Mohammad Ahanjan

Abstract Background Klebsiella pneumoniae is a common cause of nosocomial infections. Antibiotic resistance and ability to form biofilm, as two key virulence factors of K. pneumoniae, are involved in the persistence of infections. The purpose of this study was to investigate the correlation between antimicrobial resistance and biofilm formation capability among K. pneumoniae strains isolated from hospitalized patients in Iran. Methods Over a 10-month period, a total of 100 non-duplicate K. pneumoniae strains were collected. Antibiotic susceptibility was determined by Kirby–Bauer disk diffusion method according to CLSI. Biofilm production was assessed by tissue culture plate method. Finally, polymerase chain reaction was conducted to detect four families of carbapenemase: blaIMP, blaVIM, blaNDM, blaOXA−48; biofilm formation associated genes: treC, wza, luxS; and K. pneumoniae confirming gene: rpoB. Results Most of the isolates were resistant to trimethoprim-sulfamethoxazole (52 %), cefotaxime (51 %), cefepime (43 %), and ceftriaxone (43 %). Among all the 100 isolates, 67 were multidrug-resistant (MDR), and 11 were extensively drug-resistant (XDR). The prevalence of the blaVIM, blaIMP, blaNDM, and blaOXA−48 genes were 7 , 11 , 5 , and 28 %, respectively. The results of biofilm formation in the tissue culture plate assay indicated that 75 (75 %) strains could produce biofilm and only 25 (25 %) isolates were not able to form biofilm. Among these isolates, 25 % formed fully established biofilms, 19 % were categorized as moderately biofilm-producing, 31 % formed weak biofilms, and 25 % were non-biofilm-producers. The antimicrobial resistance among biofilm former strains was found to be significantly higher than that of non-biofilm former strains (p < 0.05). Molecular distribution of biofilm formation genes revealed that 98 , 96 , and 34 % of the isolates carried luxS, treC, and wza genes, respectively. Conclusions The rise of antibiotic resistance among biofilm-producer strains demonstrates a serious concern about limited treatment options in the hospital settings. All of the data suggest that fundamental actions and introduction of novel strategies for controlling of K. pneumoniae biofilm-related infections is essential.


2020 ◽  
Vol 17 (4) ◽  
pp. 235-242 ◽  
Author(s):  
Zhi Ma ◽  
Kim Stanford ◽  
Xiao M. Bie ◽  
Yan D. Niu ◽  
Tim A. McAllister

2021 ◽  
Vol 13 (4) ◽  
pp. 1043-1052
Author(s):  
Sarita Manandhar ◽  
Raju Shrestha ◽  
Ratna Shova Tuladhar ◽  
Sunil Lekhak

Resistance to antibiotics, biofilm formation and the presence of virulence factors play important roles in increased mortality associated with infection by staphylococci. The macrolide lincosamide streptogramin B (MLSB) family of antibiotics is commonly used to treat infections by methicillin-resistant isolates. Clinical failure of clindamycin therapy has been reported due to multiple mechanisms that confer resistance to MLSB. This study aims to find the incidence of different phenotypes of MLSB resistance and biofilm production among staphylococci. A total of 375 staphylococci were isolated from different clinical samples, received from two tertiary care hospitals in Nepal. Methicillin resistance was detected by cefoxitin disc diffusion method and inducible clindamycin resistance by D test, according to CLSI guidelines. Biofilm formation was detected by the tissue culture plate method and PCR was used to detect ica genes. Of the total staphylococci isolates, 161 (42.9%) were Staphylococcus aureus, with 131 (81.4%) methicillin-resistant strains, and 214 (57.1%) isolates were coagulase-negative staphylococci, with 143 (66.8%) methicillin-resistant strains. The overall prevalence of constitutive MLSB (cMLSB) and inducible MLSB (iMLSB) phenotypes was 77 (20.5%) and 87 (23.2%), respectively. Both iMLSB and cMLSB phenotypes predominated in methicillin-resistant isolates. The tissue culture plate method detected biofilm formation in 174 (46.4%) isolates and ica genes in 86 (22.9%) isolates. Among biofilm producing isolates, cMLSB and iMLSB phenotypes were 35 (20.1%) and 27 (15.5%), respectively. The cMLSB and iMLSB were 11 (12.8%) and 19 (22.1%), respectively, in isolates possessing ica genes. Clindamycin resistance in the form of cMLSB and iMLSB, especially among MRSA, emphasizes the need for routine D tests to be performed in the lab.


Author(s):  
Prabhjeet S ◽  
Meena A K ◽  
Jesil M

Objective: The objective of the study was to evaluate the efficacy of Ganoderma lucidum toothpaste as an antiplaque agent and to compare its efficacy with herbal toothpaste and mouthwash.Methods: Pooled saliva was collected in a sterile container from the volunteers after taking the consent. Tissue culture plate with 12 (3 × 4) wells was chosen. Pooled saliva of 20 mL was added to each well using the micropipette and was kept in the incubator at 37°C for 72 h. After 72 h, saliva was removed without touching the walls or the base of the wells. Each row was treated either with slurry prepared with Ganoderma/herbal/Colgate total toothpaste or herbal/chlorhexidine mouthwash/distilled water. One row of wells was kept as a control using erythrosine dye. After 30 s, all the wells were rinsed with distilled water. Erythrosine dye was added to all the wells, kept for 30 s, and rinsed with distilled water. The tissue culture plate was kept in the ELx800MS machine (ELISA reader) which was set at 540 nm, and the readings were obtained.Results: The results showed that G. lucidum toothpaste slurry reduced plaque than herbal and chlorhexidine mouthwash. However, there was no significant difference in plaque reduction between herbal and G. lucidum toothpaste slurries.Conclusion: The present study concluded that G. lucidum had better antiplaque efficacy than herbal toothpaste, herbal mouthwash, and chlorhexidine mouthwash.


Sign in / Sign up

Export Citation Format

Share Document