Analysis of the Policy and Market Framework for Hydro Pumped Storage in Latin America and the Caribbean

2021 ◽  
Author(s):  
Arturo Alarcón ◽  
Juan Alberto ◽  
Cecilia Correa ◽  
Edwin Malagon ◽  
Emilio Sawada ◽  
...  

In the next decades, the evolution of the power sector in the region will be based on a combination of large-scale and centralized power plants, distributed generation, and even isolated microgrids. Storage technologies will be crucial to enable the management of the intrinsic variability of some renewable generation (wind and solar), particularly in scenarios where there is a need to reduce fossil fuels used for base generation. Pumped Storage Hydropower (PSH) technologies are an attractive alternative, given the regions hydropower potential, existing installed capacity, and technical knowledge. This paper explores the policy and market framework in LAC for this technology.

2020 ◽  
Vol 274 ◽  
pp. 115213 ◽  
Author(s):  
Eduard Bullich-Massagué ◽  
Francisco-Javier Cifuentes-García ◽  
Ignacio Glenny-Crende ◽  
Marc Cheah-Mañé ◽  
Mònica Aragüés-Peñalba ◽  
...  

2016 ◽  
Vol 65 (3) ◽  
pp. 495-511 ◽  
Author(s):  
Przemysław Komarnicki

Abstract Current power grid and market development, characterized by large growth of distributed energy sources in recent years, especially in Europa, are according energy storage systems an increasingly larger field of implementation. Existing storage technologies, e.g. pumped-storage power plants, have to be upgraded and extended by new but not yet commercially viable technologies (e.g. batteries or adiabatic compressed air energy storage) that meet expected demands. Optimal sizing of storage systems and technically and economically optimal operating strategies are the major challenges to the integration of such systems in the future smart grid. This paper surveys firstly the literature on the latest niche applications. Then, potential new use case and operating scenarios for energy storage systems in smart grids, which have been field tested, are presented and discussed and subsequently assessed technically and economically.


2015 ◽  
Vol 785 ◽  
pp. 627-631 ◽  
Author(s):  
Hei Wei ◽  
Rasyidah Mohamed Idris

Datong area has abundant wind energy. Due to problem in large scale of wind power grid connection, this paper introduces virtual power plant concept. As for beginning, power source characteristics of the wind farm, pumped storage power station and the thermal power plant are taken for analysis. Three types of different power plants are chosen to represent the virtual power plant modeling as well as adopting the NSGA2 optimization. As a conclusion, this case study proved that virtual power plant can increase the benefits of each power plant and the wind power plant output power curve become smoother.


Author(s):  
Ping K. Wan ◽  
Desmond W. Chan ◽  
Alice C. Carson

Nuclear power generation has become an increasingly attractive alternative in the United States (U.S.) power market due to several factors: growing demand for electric power, increasing global competition for fossil fuels, concern over greenhouse gas emissions and their potential impact on climate change, and the desire for energy independence. Assuring the protection of people and the environment are of paramount concern to nuclear power generators and regulators as we move towards a possible nuclear renaissance. Thus, sound engineering design is of utmost important and potential environmental and safety concerns must be carefully evaluated and disposition during permitting of the new nuclear power plants. Areas to be considered in order to alleviate these concerns include the following: • Site meteorology and dispersion conditions of the area; • Evaluation of radiological consequence during normal plant operation and emergency conditions; • Water availability for plant cooling system; • Evaluation of potential land use, water use, ecological and socioeconomic impacts of the proposed action. This paper focuses on site suitability evaluation for greenfield sites through site characterization, examination of challenges/constraints in deployment of available technology/plant systems, and mapping of permitting compliance strategy. Case studies related to selection of plant systems based on the environmental site conditions, preferred compliance plan, and public acceptance, are included.


2012 ◽  
Vol 16 (3) ◽  
pp. 849-864 ◽  
Author(s):  
Marcos Escudero ◽  
Ángel Jiménez ◽  
Celina González ◽  
Rafael Nieto ◽  
Ignacio López

The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to a significant reduction of CO2 emissions using an existing combustion technology, although considerable changes appear to be required and further technological development is necessary. The goal of this work is to conduct energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e., from biomass to electricity) also has been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, after considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish this work. The results suggest a high interest in, and the technical viability of, the use of Biomass Integrated Gasification Combined Cycle (BioIGCC) systems for large scale power generation.


2020 ◽  
Vol 10 (14) ◽  
pp. 4842 ◽  
Author(s):  
Miguel Meque Uamusse ◽  
Kamshat Tussupova ◽  
Kenneth M Persson

The impact of climate change on the production of hydropower in Mozambique is reviewed and regression analysis is applied to evaluate future climate scenarios. The results show that climate change will cause increased variability of precipitation and create flooding that can damage infrastructure such as hydropower dams. Climate change can also cause drought that will decrease surface water and reduce hydroelectric generation in Mozambique. Electricity generation is to a major extent performed through large-scale hydropower in Mozambique. To fulfill the sustainable development goals (SDGs) and an increased demand for electricity, several large and many small hydropower projects are planned and were built in the country. The economic lifetime of a hydropower plant is typically 100 years, meaning that the hydrologic regimes for the plants should be evaluated for at least this period. Climate change effects are rarely included in present feasibility studies. Economic implications associated with climate change phenomena are higher in Mozambique than in neighboring countries as its future electricity demand to a large extent is forecasted to be met by hydropower. The large hydropower potential in Mozambique should as well be considered when investing in new power plants in southern Africa.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 608 ◽  
Author(s):  
Hui Li ◽  
Xue Min ◽  
Mingwei Dai ◽  
Xinju Dong

Anhui Province (AHP), a typical agriculture-based province in China, has a significant amount of biomass resources for the development of biomass power plants. By the end of 2016, 23 straw based biomass power plants were established in AHP, aggregating to 6560 MW capacity, which is now ranked second in China. This paper presents the current development status and GHG (Greenhouse Gas) mitigation effect of the straw based biomass power plants in Anhui Province. Total biomass production in 2016 was calculated as 41.84 million tons. Although there is huge biomass potential in AHP, the distribution is heterogeneous with a gradually decreasing trend from north to south. Furthermore, the installed capacity of power generation is also unmatched with the biomass resources. Based on a calculation made in 2016, approximately 3.44 million tons of CO2-eq were mitigated from the biomass power plants in AHP. The large-scale development of biomass power plants remains a challenge for the future, especially in areas of AHP with a low biomass density.


2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Debrayan Bravo Hidalgo ◽  
Alexander Báez Hernández

The objective of this contribution is to provide a state-of-the-art on research in solar thermal electricity systems. This objective is achieved using Scopus, and the softwears “Publish or Perish” and “VOSviewer”. The results of the research show the behavior of scientific productivity in this area. As well as the most productive thematic areas. Nations that lead the research in the generation of electric power on a large scale, using solar thermal energy. Network of scientific collaboration among nations, referring to the research of electricity generation through solar thermal energy. Correlation network among the most productive authors, in this subject within the Scopus directory. Most cited articles by each of the main journals that disseminate this theme. Conceptual bases of the generation of electricity with solar thermal energy. Properties of thermal energy storage technologies (TES) in power plants with parabolic solar concentrators or solar concentration towers. Current technologies and trends. Technological trends. Trends in the global energy market.


2010 ◽  
Vol 37 (5) ◽  
pp. 684-694 ◽  
Author(s):  
Mehmet Berkun

The Southeastern Anatolia Project (GAP), encompassing 27 dams and 19 hydroelectric power plants, is a large-scale water management program aiming at an increase in domestic electricity production and the development of vast irrigation schemes for agriculture. In spite of numerous benefits experienced in the area, there is also a multitude of impacts observed on the environment. The Coruh River is the longest river of the East Black Sea region and is of high economic importance to Turkey because of its largely exploitable hydropower potential. The Coruh project consists of 27 planned dams and hydroelectric power plants. The planned dams have the potential to cause serious environmental effects in upstream Turkey and downstream Georgia. Equitable, rational, and optimal utilization of transboundary water resources can be achieved through a scientific study, which will determine the true water needs of each riparian country. A precise assessment is needed of the economic, ecological, and social problems on the basis of the environmental impact and cumulative effect assessment reports.


2014 ◽  
Vol 15 ◽  
pp. 37-41 ◽  
Author(s):  
Neeraj Kumar Sah ◽  
Madhab Uprety ◽  
Sangharsha Bhandari ◽  
Prativa Kharel ◽  
Saurav Suman ◽  
...  

An Integrated Power System (IPS) should have electrical energy generating plants for base load (e.g., nuclear and thermal plants) and peak load (e.g., hydropower plants) so that they can work in coordination in such a way that the demand is met in time. In Nepal, the Integrated Nepal Power System (INPS) is a hydro-dominated system where the base and intermediate power demands are covered primarily by run-of-river hydropower plants and the peak demand by seasonal storage and several diesel power plants of lower capacity. The INPS should have sufficient natural storage and forced storage power plants to improve the system’s reliability. On top of that, daily peak electrical demand could also be adequately covered by demand-side management, using a pumped-storage hydropower plant that can employ a system’s surplus energy during low demand period for pumping. To rectify this extreme imbalance of installed capacity in Nepal, this paper explores the prospect of storage and pumped-storage power plants for enhancing INPS. A case study of Rupa-Begnas pumped-storage hydropower is highlighted for these purposes.DOI: http://dx.doi.org/10.3126/hn.v15i0.11290HYDRO Nepal JournalJournal of Water, Energy and EnvironmentVolume: 15, 2014, JulyPage: 37-41 


Sign in / Sign up

Export Citation Format

Share Document