scholarly journals Impact Of Remotely Accessing Computer Software In A Commuter Campus On Freshmen Engineering Students

2020 ◽  
Author(s):  
Suleiman Ashur ◽  
S. Scott Moor ◽  
Essam Zaneldin
1997 ◽  
Vol 26 (2) ◽  
pp. 127-136 ◽  
Author(s):  
C. Wu

The Mechanical Engineering Department at the United States Naval Academy is currently evaluating a new teaching method which implements the use of a computer software. Utilizing the thermodynamic based software CyclePad, Intelligent Computer Aided Instruction (ICAI) is incorporated in an advanced energy conversion course (EM443) for Mechanical Engineering students. The use of the CyclePad software enhances lectures and aids students in visualization and design.


Author(s):  
Guido W. Lopez

Traditionally, the teaching and learning of introductory undergraduate Thermodynamics in Mechanical Engineering programs stressed the manipulation of formulas and the use of property tables. At present, the use of computer-based instruction is becoming more common in the classroom and it is proving to be a valuable tool for enhancing the educational experience of students. In teaching Thermodynamics, for example, much of the tedious manipulative and computational work encountered while solving problems can now be effectively and quickly executed by computer software. This approach leaves ample time for instructors to emphasize concepts and principles instead of procedures, and to foster an environment that helps students to master the underlying science of the discipline while minimizing computational burden. A comparative study between teaching introductory Thermodynamics using a traditional approach versus using the software EES (acronym for Engineering Equation Solver) as a computational tool is presented in this paper. A statistical comparison of academic performance in introductory Thermodynamics between two groups of engineering students of comparable academic level and capability but enrolled in different schools is also part of this study. Qualitative and quantitative results suggest that students can achieve a clearer understanding of concepts, definitions and principles of introductory Thermodynamics when using computer software as a tool in their learning process.


Author(s):  
Manjit Singh Sidhu

The Mechanical Engineering course is largely based on practical skills and requires the acquisition of basic skills and domain knowledge before applying them on real problems. In order to design and develop a technology assisted problem solving (TAPS) package particularly to guide students in learning and solving engineering problems, it is necessary to be acquainted with its development and its process of realization in practical terms in computer software. User interface design has been applied in learning environments as discussed in previous Chapter 3. Therefore it is informative to discover the extent to which they help engineering students in their learning and thereby be incorporated in TAPS packages. This examination includes an overview of good practice in the positioning and operation of navigational features, visual screen presentation, the nature of presentation, help and feedback and views on the role of the learner in using the TAPS packages. This Chapter discusses the need to learn practical Mechanical Engineering skills and reviews the tutorial and situational learning approaches. Additionally the Chapter provides an overview of TAPS packages and the approach adopted for problem solving and student learning.


Author(s):  
James Long ◽  
John C. Anderson ◽  
Wangping Sun

Smart assembly is a term that is being used to describe the concept of integration of virtual and real time tools and methods to achieve gains in productivity, lead time, quality, and agility in the manufacturing arena. This paper describes efforts and successes in planning and implementing a laboratory to teach undergraduate engineering students these tools and allow for applied research. Between 1973 and 2004 the percentage of goods consumed in the US that are produced in the US has dropped from 83% to 24%. Much of this decrease has been driven by globalization. Goods can be manufactured for 30 to 50% less in China, for example, than in the US. This poses a very real threat to the manufacturing base of the US. An alternative business model that places the production closer to the customer is gaining favor as at least partial solution to this problem. This model is driven by automation and systems engineering to decrease cost and increase flexibility. The lab at Oregon Institute of Technology will use a collection of small robots and standard material handling devices to model physical systems. Discrete event simulation programs will be developed that allow engineers to quickly and easily model changes. This project is a collaboration of the Manufacturing and the Computer Software Engineering Technology programs. It is being driven by a series of faculty and student projects.


Author(s):  
Charles A. N. Johnson ◽  
Mohd Fadzil Bin Daud ◽  
Mahyuddin Bin Arsat ◽  
Wan Nazdah Bt. Wan Hussin ◽  
Ernest Ituma Egba

In this digital age, the deployment of modern technology in the workplace to mitigate global challenges has become paramount. Therefore, the academic program, as accredited by the regulatory and accreditation bodies, is to ensure the production of quality industry-ready engineering graduates. These products are expected to be technology savvy and proficiently skilled in using computer software (CS) for productivity towards engineering activities. Unfortunately, there exists a gap in the quality of the graduates produced by tertiary engineering institutions in the developing world. This gap can be associated with the lack of computational thinking (CT) skills to meet the industry needs in this age of IR 4.0. Therefore, the paper reports the engineering educators’ perceived contributions and gains achieved while employing computer software in the course of instruction towards the cognitive ability enhancement of the engineering students. It provides an in-depth exploratory inquiry into the deployment of CT and its impacts in engineering education while focusing on its integration at what level in the course of study. The research follows a phenomenographic research approach explored the experiences of engineering educators from different engineering disciplines in the higher education institutions, namely chemical, civil, electrical, and mechanical engineering, to gain valuable insights. Data collected through a semi-structured, in-depth interview was coded using NVivo 12 CAQDAS and analysed for relevant themes. The findings indicate a significant potential benefit of enhanced cognitive abilities leading to the development of special knowledge, generic intellectual abilities, and personal attributes. In addition, the integration of CS should be the focus of instruction at the most appropriate level of study to allow for considerable exposure to CS to achieve the desired learning outcome. These findings have direct implications on the engineering educators and students, engineering faculties, and other stakeholders.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Author(s):  
F.A. Ponce ◽  
H. Hikashi

The determination of the atomic positions from HRTEM micrographs is only possible if the optical parameters are known to a certain accuracy, and reliable through-focus series are available to match the experimental images with calculated images of possible atomic models. The main limitation in interpreting images at the atomic level is the knowledge of the optical parameters such as beam alignment, astigmatism correction and defocus value. Under ordinary conditions, the uncertainty in these values is sufficiently large to prevent the accurate determination of the atomic positions. Therefore, in order to achieve the resolution power of the microscope (under 0.2nm) it is necessary to take extraordinary measures. The use of on line computers has been proposed [e.g.: 2-5] and used with certain amount of success.We have built a system that can perform operations in the range of one frame stored and analyzed per second. A schematic diagram of the system is shown in figure 1. A JEOL 4000EX microscope equipped with an external computer interface is directly linked to a SUN-3 computer. All electrical parameters in the microscope can be changed via this interface by the use of a set of commands. The image is received from a video camera. A commercial image processor improves the signal-to-noise ratio by recursively averaging with a time constant, usually set at 0.25 sec. The computer software is based on a multi-window system and is entirely mouse-driven. All operations can be performed by clicking the mouse on the appropiate windows and buttons. This capability leads to extreme friendliness, ease of operation, and high operator speeds. Image analysis can be done in various ways. Here, we have measured the image contrast and used it to optimize certain parameters. The system is designed to have instant access to: (a) x- and y- alignment coils, (b) x- and y- astigmatism correction coils, and (c) objective lens current. The algorithm is shown in figure 2. Figure 3 shows an example taken from a thin CdTe crystal. The image contrast is displayed for changing objective lens current (defocus value). The display is calibrated in angstroms. Images are stored on the disk and are accessible by clicking the data points in the graph. Some of the frame-store images are displayed in Fig. 4.


1997 ◽  
Vol 6 (3) ◽  
pp. 57-65 ◽  
Author(s):  
Lisa A. Wood ◽  
Joan L. Rankin ◽  
David R. Beukelman

Word prompt programs are computer software programs or program features that are used in addition to basic word processing. These programs provide word lists from which a user selects a desired word and inserts it into a line of text. This software is used to support individuals with severe speech, physical, and learning disabilities. This tutorial describes the features of a variety of word prompt programs and reviews the current literature on the use of these programs by people with oral and written language needs. In addition, a matrix that identifies the features contained in eight sample word prompt programs is provided. The descriptions of features and the matrix are designed to assist speech-language pathologists and teachers in evaluating and selecting word prompt programs to support their clients' oral and written communication.


1983 ◽  
Vol 15 (4) ◽  
pp. 267-273 ◽  
Author(s):  
Ronald G. Taylor ◽  
Robert D. Whetstone
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document