scholarly journals A Reconfigurable Graphene Nanoantenna on Quartz Substrate

2020 ◽  
Vol 19 (5) ◽  
pp. 379-383
Author(s):  
Yanghua Gao ◽  
Weidong Lou ◽  
Hailiang Lu

In the terahertz (THz) band, conventional metallic antennas are virtually infeasible, due to the low mobility of electrons and huge attenuation. The existing metallic THz antennas need a high power to overcome scattering losses, and tend to have a low antenna efficiency. Fortunately, graphene is an excellent choice of miniaturized antenna in millimeter/THz applications, thanks to its unique electronic properties in THz band. Therefore, this paper presents two miniaturized reconfigurable graphene antennas, and characterizes their performance in terms of frequency reconfiguration, omnidirectional radiation pattern, and radiation efficiency. The proposed graphene antennas were printed on a quartz substrate, and simulated on CST Microwave Studio. The results show that the excellence of the proposed antennas in reflection coefficient, dynamic frequency reconfiguration (DFR), and omnidirectional radiation pattern. The operation frequency of the two antennas varies from 0.74 to 1.26 THz and from 0.92 to 1.15 THz, respectively. The proposed antennas have great prospects in wireless communications/sensors.


Author(s):  
Mike Köhler ◽  
Jürgen Hasch ◽  
Hans Ludwig Blöcher ◽  
Lorenz-Peter Schmidt

Radar sensors are used widely in modern driver assistance systems. Available sensors nowadays often operate in the 77 GHz band and can accurately provide distance, velocity, and angle information about remote objects. Increasing the operation frequency allows improving the angular resolution and accuracy. In this paper, the technical feasibility to move the operation frequency beyond 100 GHz is discussed, by investigating dielectric properties of radome materials, the attenuation of rain and atmosphere, radar cross-section behavior, active circuits technology, and frequency regulation issues. Moreover, a miniaturized antenna at 150 GHz is presented to demonstrate the possibilities of high-resolution radar for cars.



Author(s):  
Juha Ala-Laurinaho ◽  
Zhou Du ◽  
Vasilii Semkin ◽  
Ville Viikari ◽  
Antti V. Raisanen


Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 975
Author(s):  
Muhammad A. Ashraf ◽  
Khalid Jamil ◽  
Ahmed Telba ◽  
Mohammed A. Alzabidi ◽  
Abdel Razik Sebak

In this paper, a novel concept on the design of a broadband printed Yagi antenna for S-band wireless communication applications is presented. The proposed antenna exhibits a wide bandwidth (more than 48% fractional bandwidth) operating in the frequency range 2.6 GHz–4.3 GHz. This is achieved by employing an elliptically shaped coupled-directive element, which is wider compared with other elements. Compared with the conventional printed Yagi design, the tightly coupled directive element is placed very close (0.019λ to 0.0299λ) to the microstrip-fed dipole arms. The gain performance is enhanced by placing four additional elliptically shaped directive elements towards the electromagnetic field’s direction of propagation. The overall size of the proposed antenna is 60 mm × 140 mm × 1.6 mm. The proposed antenna is fabricated and its characteristics, such as reflection coefficient, radiation pattern, and gain, are compared with simulation results. Excellent agreement between measured and simulation results is observed.



2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Xuping Li ◽  
Yabing Yang ◽  
Fei Gao ◽  
Hanqing Ma ◽  
Xiaowei Shi

A compact dielectric resonator antenna (DRA) suitable for wideband applications is presented in this paper. The proposed antenna is mainly composed by a notched cylindrical dielectric resonator (DR) coated with a metal surface on the top and a finite ground plane where the presented DR is placed. This antenna is very simple in structure and has a very low overall height of0.14λminat its lowest operation frequency. A comprehensive parametric study is carried out based on Ansoft HFSS to optimize the bandwidth. The proposed antenna has been successfully simulated, optimized, fabricated, and measured. The measurement results demonstrate that the proposed design produces an impedance bandwidth of more than 75%, ranging from 2.9 GHz to 6.7 GHz for the reflection coefficient less than −10 dB. In particular, consistent broadside radiation patterns, stable gain, and high radiation efficiency are also obtained within the operation frequency band.



2010 ◽  
Author(s):  
Gao-Wei Chang ◽  
Chia-Cheng Liao ◽  
Yung-Chang Chen


Author(s):  
Ajay Thatere ◽  
◽  
Sachin Khade ◽  
Vipul Lande S ◽  
◽  
...  

A modified rectangular Microstrip slot antenna for numerous applications like WLAN, Wi-Fi 5, satellite telecommunication and 5G application is portrayed. The proposed antenna has dimension of 25×30×1.6 mm3. The structure consists of partial ground and DGS. The proposed design is embedded on FR4 lossy substrate having dielectric constant of 4.3 and thickness of 1.6 mm. Two similar inverted L shape CLLR are introduced at left and right edge of the ground plane to improve current distribution and to achieve wide bandwidth. The results like reflection coefficient, surface current, gain, directivity, VSWR, impedance and radiation pattern are found up to the mark.



2020 ◽  
Vol 7 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Shuoliang Ding ◽  
Stavros Koulouridis ◽  
Lionel Pichon

AbstractIn this paper, a complete wireless power transmission scenario is presented, including an external transmission antenna, an in-body embedded antenna, a rectifying circuit, and a powered sensor. This system operates at the Industrial, Scientific, and Medical bands (902.8–928 MHz). For the antenna design, important parameters including reflection coefficient, radiation pattern, and specific absorption rate are presented. As for the rectifying circuit, a precise model is created utilizing off-the-shelf components. Several circuit models and components are examined in order to obtain optimum results. Finally, this work is evaluated against various sensors' power needs found in literature.



2021 ◽  
Author(s):  
M Gonzalez-Rodriguez ◽  
Carlos Collado ◽  
Jordi Mateu ◽  
J.M. Gonzalez-Arbesu ◽  
Sebastian Huebner ◽  
...  


2019 ◽  
Vol 67 (2) ◽  
pp. 719-729 ◽  
Author(s):  
Wen Duan ◽  
Xiu Yin Zhang ◽  
Shaowei Liao ◽  
Kai Xu Wang ◽  
Quan Xue


Sign in / Sign up

Export Citation Format

Share Document