scholarly journals Investigation of Wall Function Effects on Aerodynamic Characteristics of Turbulent Flow Around a Simplified High-Speed Train

2021 ◽  
Vol 39 (1) ◽  
pp. 309-318
Author(s):  
Alireza Hajipour ◽  
Arash Mirabdolah Lavasani ◽  
Mohammad Eftekhari Yazdi

Modelling of turbulence is a vital issue for flow forecasting which is of great interest for most of engineering applications like flow over planes, movement of pollutants and some industrial processes. Originally, via solving the government equations (Navier-Stokes equations) the flow field can be simulated. With developing PCs and high-performance computers, implementing of Navier-Stokes equations for numerical simulation is increasing. In this research, the effects of some wall functions on aerodynamic and turbulence behavior of air flow around a simplified high-speed train via OpenFOAM software are numerically investigated. In the following, first, the effects of some default and common wall functions of OpenFOAM on the flow and aerodynamic key parameters are analyzed and then, a relatively new wall function called “Enhanced Wall Function” was implemented from ANSYS FLUENT into OpenFOAM and improvement for comprehensive simulation. Variations of flow key parameters such as velocity, pressure distribution and aerodynamic significant components and parameters such as lift, drag and side coefficients under the influence of wall functions changes are illustrated. The results could be used for obtaining more accurate analysis of aerodynamic characteristics of fluid flow around high-speed trains.

2012 ◽  
Vol 253-255 ◽  
pp. 2035-2040
Author(s):  
Ye Bo Liu ◽  
Zhi Ming Liu

Numerical simulations were carried out to investigate the air flow and pressure distributions beneath high speed trains, based on the three-dimensional Reynolds-averaged Navier-Stokes equations with the SST k-ω two-equation turbulence model. The simulation scenarios were of the high speed train, the CRH2, running in the open air at four different speeds: 200km/h, 250km/h, 300km/h and 350km/h. The results show that, the highest area of pressure is located at the front underbody part of the train whist the pressure for rest of the train is relatively small. Increasing speed does not visibly increase the pressure coefficient, indicating that the pressure increases with the square of the operational speed.


2011 ◽  
Vol 94-96 ◽  
pp. 1663-1667
Author(s):  
Jing Zhao ◽  
Ren Xian Li

In this paper, the aerodynamic effects of high-speed train passing in tunnels are investigated in numerical calculation method of hydromechanics. According to the actual situation of flow filed when the train through the tunnel, the flow geometry model is set up. The flow problem is described by Navier-Stokes equations of unsteady viscous compressible fluid and k-e two equations turbulent model. Thereby the aerodynamic effects of the train through the tunnel are analyzed comprehensively. The changes of the air pressure in tunnel caused by high-speed train entering into the tunnel are mainly analyzed. In addition, the mechanical characteristics of carriages when two train in the tunnel passing through each other are analyzed.


2011 ◽  
Vol 66-68 ◽  
pp. 1878-1882
Author(s):  
Ming Lu Zhang ◽  
Yi Ren Yang ◽  
Chen Guang Fan ◽  
Li Lu

The aerodynamic performances of a high speed train will significant change under the action of the crosswind. Large eddy simulation (LES) was made to solve the flow around a simplified CRH2 high speed train with 250km/h and 350km/h under the influence of a crosswind with 28.4m/s base on the finite volume method and dynamic layering mesh method and three dimensional incompressible Navier-Stokes equations. Wind tunnel experimental method of static train with relative flowing air and dynamic mesh method of moving train were compared. The results of numerical simulation show that the flow field around train is completely different between Wind tunnel experiment and factual running. Many vortices will be produced on the leeside of the train with alternately vehicle bottom and back under the influence of a crosswind. The flow field around train is similar with different vehicle speed.


2014 ◽  
Vol 590 ◽  
pp. 69-73
Author(s):  
Yu Wang ◽  
Qiang Gao ◽  
Hai Lin Wang

In this paper, the wind-induced response of the ADSS is analyzed when the high-speed trains pass by. The wind flow field of the high-speed train is simulated based on the three-dimensional Reynolds-averaged Navier–Stokes equations, combined with the k-ε turbulence model. The result is shown that the wind load acting on the ADSS is quite low and the stress of the line clamp increases a little.


Author(s):  
Neil W. Harvey ◽  
Martin G. Rose ◽  
John Coupland ◽  
Terry Jones

A 3-D steady viscous finite volume pressure correction method for the solution of the Reynolds averaged Navier-Stokes equations has been used to calculate the heat transfer rates on the end walls of a modern High Pressure Turbine first stage stator. Surface heat transfer rates have been calculated at three conditions and compared with measurements made on a model of the vane tested in annular cascade in the Isentropic Light Piston Facility at DERA, Pyestock. The NGV Mach numbers, Reynolds numbers and geometry are fully representative of engine conditions. Design condition data has previously been presented by Harvey and Jones (1990). Off-design data is presented here for the first time. In the areas of highest heat transfer the calculated heat transfer rates are shown to be within 20% of the measured values at all three conditions. Particular emphasis is placed on the use of wall functions in the calculations with which relatively coarse grids (of around 140,000 nodes) can be used to keep computational run times sufficiently low for engine design purposes.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 168 ◽  
Author(s):  
Agostino Lauria ◽  
Giancarlo Alfonsi ◽  
Ali Tafarojnoruz

Ski jump spillways are frequently implemented to dissipate energy from high-speed flows. The general feature of this structure is to transform the spillway flow into a free jet up to a location where the impact of the jet creates a plunge pool, representing an area for potential erosion phenomena. In the present investigation, several tests with different ski jump bucket angles are executed numerically by means of the OpenFOAM® digital library, taking advantage of the Reynolds-averaged Navier–Stokes equations (RANS) approach. The results are compared to those obtained experimentally by other authors as related to the jet length and shape, obtaining physical insights into the jet characteristics. Particular attention is given to the maximum pressure head at the tailwater. Simple equations are proposed to predict the maximum dynamic pressure head acting on the tailwater, as dependent upon the Froude number, and the maximum pressure head on the bucket. Results of this study provide useful suggestions for the design of ski jump spillways in dam construction.


Author(s):  
Fahua Gu ◽  
Mark R. Anderson

The design of turbomachinery has been focusing on the improvement of the machine efficiency and the reduction of the design cost. This paper presents an integrated design system to create the machine geometry and to predict the machine performance at different levels of approximation, including one-dimensional design and analysis, quasi-three-dimensional-(blade-to-blade, throughflow) and full-three-dimensional-steady-state CFD analysis. One of the most important components, the Reynolds-averaged Navier-Stokes solver, is described in detail. It originated from the Dawes solver with numerous enhancements. They include the use of the low speed pre-conditioned full Navier-Stokes equations, the addition of the Spalart-Allmaras turbulence model and an improvement of wall functions related with the turbulence model. The latest upwind scheme, AUSM, has been implemented too. The Dawes code has been rewritten into a multi-block solver for O, C, and H grids. This paper provides some examples to evaluate the effect of grid topology on the machine performance prediction.


Author(s):  
K M Guleren ◽  
A Pinarbasi

The main goal of the present work is to analyse the numerical simulation of a centrifugal pump by solving Navier-Stokes equations, coupled with the ‘standard k-∊’ turbulence model. The pump consists of an impeller having five curved blades with nine diffuser vanes. The shaft rotates at 890r/min. Flow characteristics are assumed to be stalled in the appropriate region of flowrate levels of 1.31-2.861/s. Numerical analysis techniques are performed on a commercial FLUENT package program assuming steady, incompressible flow conditions with decreasing flowrate. Under stall conditions the flow in the diffuser passage alternates between outward jetting when the low-pass-filtered pressure is high to a reverse flow when the filtered pressure is low. Being below design conditions, there is a consistent high-speed leakage flow in the gap between the impeller and the diffuser from the exit side of the diffuser to the beginning of the volute. Separation of this leakage flow from the diffuser vane causes the onset of stall. As the flowrate decreases both the magnitude of the leakage within the vaneless part of the pump and reverse flow within a stalled diffuser passage increase. As this occurs, the stall-cell size extends from one to two diffuser passages. Comparisons are made with experimental data and show good agreement.


Author(s):  
Y Wang ◽  
S Komori

A pressure-based finite volume procedure developed previously for incompressible flows is extended to predict the three-dimensional compressible flow within a centrifugal impeller. In this procedure, the general curvilinear coordinate system is used and the collocated grid arrangement is adopted. Mass-averaging is used to close the instantaneous Navier-Stokes equations. The covariant velocity components are used as the main variables for the momentum equations, making the pressure-velocity coupling easier. The procedure is successfully applied to predict various compressible flows from subsonic to supersonic. With the aid of the k-ɛ turbulence model, the flow details within a centrifugal impeller are obtained using the present procedure. Predicted distributions of the meridional velocity and the static pressure are reasonable. Calculated radial velocities and flow angles are favourably compared with the measurements at the exit of the impeller.


2012 ◽  
Vol 232 ◽  
pp. 246-251 ◽  
Author(s):  
P. Sathyan ◽  
S. Srikanth ◽  
I. Dheepan ◽  
M. Arun ◽  
C. Aswin ◽  
...  

The geometrical optimization of dump diffusers are extremely demanding as the flow fields and stress fields are very complex and must be well understood to achieve the required design efficiencies. In this paper parametric analytical studies have been carried out for examining the aerodynamics characteristics of different dump diffusers for modern aircraft engines. Numerical studies have been carried out using SST K- ω turbulence model. This code solves SST k- ω turbulence equations using the coupled second order implicit unsteady formulation. In the numerical study, a fully implicit finite volume scheme of the compressible, Reynolds-Averaged, Navier-Stokes equations is employed. We concluded that in addition to the dump gap ratio, the aerodynamic shape of the flame tube case and the other geometric variables are also need to be optimized judiciously after considering the fluid dynamic constraints for controlling the pressure recovery and the losses.


Sign in / Sign up

Export Citation Format

Share Document