scholarly journals In vitro DNA binding of purified CcpA protein from Lactococcus lactis IL1403.

2007 ◽  
Vol 54 (1) ◽  
pp. 71-78 ◽  
Author(s):  
Magdalena Kowalczyk ◽  
Barbara Borcz ◽  
Danuta Płochocka ◽  
Jacek Bardowski

During this study His-tagged CcpA protein purified under native conditions to obtain a biologically active protein was used for molecular analysis of CcpA-dependent regulation. Using electrophoretic mobility shift assays it was demonstrated that CcpA of L. lactis can bind DNA in the absence of the HPr-Ser-P corepressor and exhibits DNA-binding affinity for nucleotide sequences lacking cre sites. However, purified HPr-Ser-P protein from Bacillus subtilis was shown to slightly increase the DNA-binding capacity of the CcpA protein. It was also observed that CcpA bound to the cre box forms an apparently more stable complex than that resulting from unspecific binding. Competition gel retardation assay performed on DNA sequences from two PEP:PTS regions demonstrated that the ybhE, bglS, rheB, yebE, ptcB and yecA genes situated in these regions are most probably directly regulated by CcpA.

2001 ◽  
Vol 276 (50) ◽  
pp. 47664-47670 ◽  
Author(s):  
Woo-Jin Chang ◽  
Rafael Alvarez-Gonzalez

Recent studies suggest that the synthesis of protein-bound ADP-ribose polymers catalyzed by poly(ADP-ribose) polymerase-1 (PARP-1) regulates eucaryotic gene expression, including the NF-κB-dependent pathway. Here, we report the molecular mechanism by which PARP-1 activates the sequence-specific binding of NF-κB to its oligodeoxynucleotide. We co-incubated pure recombinant human PARP-1 and the p50 subunit of NF-κB (NF-κB-p50) in the presence or absence of βNAD+in vitro.Electrophoretic mobility shift assays showed that, when PARP-1 was present, NF-κB-p50 DNA binding was dependent on the presence of βNAD+. DNA binding by NF-κB-p50 was not efficient in the absence of βNAD+. In fact, the binding was not efficient in the presence of 3-aminobenzamide (3-AB) either. Thus, we conclude that NF-κB-p50 DNA binding is protein-poly(ADP-ribosyl)ation dependent. Co-immunoprecipitation and immunoblot analysis revealed that PARP-1 physically interacts with NF-κB-p50 with high specificity in the absence of βNAD+. Because NF-kB-p50 was not an efficient covalent target for poly(ADP-ribosyl)ation, our results are consistent with the conclusion that the auto-poly(ADP-ribosyl)ation reaction catalyzed by PARP-1 facilitates the binding of NF-κB-p50 to its DNA by inhibiting the specific protein·protein interactions between NF-κB-p50 and PARP-1. We also report the activation of NF-κB DNA binding by the automodification reaction of PARP-1 in cultured HeLa cells following exposure to H2O2. In these experiments, preincubation of HeLa cells with 3-AB, prior to oxidative damage, strongly inhibited NF-κB activationin vivoas well.


1995 ◽  
Vol 15 (3) ◽  
pp. 1602-1612 ◽  
Author(s):  
K Kitagawa ◽  
H Masumoto ◽  
M Ikeda ◽  
T Okazaki

We previously reported that centromere protein B (CENP-B) forms a stable complex (designated complex A) containing two alphoid DNAs in vitro. Domains in the CENP-B polypeptide involved in the formation of complex A were determined in the present study with truncated derivatives expressed in Escherichia coli and in rabbit reticulocyte lysates. It was revealed by gel mobility shift analyses that polypeptides containing the NH2-terminal DNA-binding domain bind a DNA molecule as a monomer, while dimerizing at a novel hydrophobic domain in the COOH-terminal region of 59 amino acid residues. This polypeptide dimerization activity at the COOH-terminal region was also confirmed with the two-hybrid system in Saccharomyces cerevisiae cells. The results thus proved that CENP-B polypeptides form a homodimer at the COOH-terminal hydrophobic domain, each binding a DNA strand at their NH2-terminal domains. The dimerization and DNA-binding domains fall into two of the three completely conserved sequences found in human and mouse CENP-B, and complex A-forming activity was also detected in nuclear extracts of mouse cells. Metaphase-specific phosphorylation of CENP-B was also detected, but this had no effect on its complex A-forming activity. On the basis of the present results, we propose that CENP-B plays an important role in the assembly of specific centromere structures by forming unique DNA-protein complexes at the sites of CENP-B boxes on the centromeric repetitive DNA both in interphase nuclei and on mitotic chromosomes.


2007 ◽  
Vol 75 (11) ◽  
pp. 5509-5517 ◽  
Author(s):  
Guangchun Bai ◽  
Michaela A. Gazdik ◽  
Damen D. Schaak ◽  
Kathleen A. McDonough

ABSTRACT Mycobacterium tuberculosis Rv3676 encodes a cyclic AMP (cAMP) receptor-like protein (CRPMt) that has been implicated in global gene regulation and may play an important role during tuberculosis infection. The CRPMt ortholog in Mycobacterium bovis BCG, CRPBCG, is dysfunctional in an Escherichia coli CRP competition assay and has been proposed as a potential source of M. bovis BCG's attenuation. We compared CRPBCG and CRPMt in vitro and in vivo, in M. bovis BCG and M. tuberculosis, to evaluate CRPBCG's potential function in a mycobacterial system. Both proteins formed dimers in mycobacterial lysates, bound to the same target DNA sequences, and were similarly affected by the presence of cAMP in DNA binding assays. However, CRPMt and CRPBCG differed in their relative affinities for specific DNA target sequences and in their susceptibilities to protease digestion. Surprisingly, CRPBCG DNA binding activity was stronger than that of CRPMt both in vitro and in vivo, as measured by electrophoretic mobility shift and chromatin immunoprecipitation assays. Nutrient starvation-associated regulation of several CRPMt regulon members also differed between M. bovis BCG and M. tuberculosis. We conclude that CRPBCG is a functional cAMP-responsive DNA binding protein with an in vivo DNA binding profile in M. bovis BCG similar to that of CRPMt in M. tuberculosis. However, biologically significant functional differences may exist between CRPBCG and CRPMt with respect to gene regulation, and this issue warrants further study.


Author(s):  
Hongling Qiu ◽  
Lu Xue ◽  
Li Gao ◽  
Huanjie Shao ◽  
Di Wang ◽  
...  

AbstractThe human ZNF300 gene is a member of the KRAB/C2H2 zinc finger gene family, the members of which are known to be involved in various developmental and pathological processes. Here, we show that the ZNF300 gene encodes a 68-kDa nuclear protein that binds DNA in a sequence-specific manner. The ZNF300 DNA binding site, C(t/a)GGGGG(c/g)G, was defined via a random oligonucleotide selection assay, and the DNA binding site was further confirmed by electrophoretic mobility shift assays. A potential ZNF300 binding site was found in the promoter region of the human IL-2Rβ gene. The results of electrophoretic mobility shift assays indicated that ZNF300 bound to the ZNF300 binding site in the IL-2Rβ promoter in vitro. Transient co-transfection assays showed that ZNF300 could activate the IL-2Rβ promoter, and that the activation was abrogated by the mutation of residues in the ZNF300 binding site. Identifying the DNA binding site and characterizing the transcriptional regulation property of ZNF300 would provide critical insights into its potential as a transcriptional regulator.


1992 ◽  
Vol 12 (2) ◽  
pp. 444-454
Author(s):  
S M Ruben ◽  
R Narayanan ◽  
J F Klement ◽  
C H Chen ◽  
C A Rosen

The NF-kappa B transcription factor complex is composed of two proteins, designated p50 and p65, both having considerable homology to the product of the rel oncogene. We present evidence that the p65 subunit is a potent transcriptional activator in the apparent absence of the p50 subunit, consistent with in vitro results demonstrating that p65 can interact with DNA on its own. To identify the minimal activation domain, chimeric fusion proteins between the DNA binding domain of the yeast transcriptional activator protein GAL4 and regions of the carboxy terminus of p65 were constructed, and their transcriptional activity was assessed by using a GAL4 upstream activation sequence-driven promoter-chloramphenicol acetyltransferase fusion. This analysis suggests that the boundaries of the activation domain lie between amino acids 415 and 550. Moreover, single amino acid changes within residues 435 to 459 greatly diminished activation. Similar to other activation domains, this region contains a leucine zipper-like motif as well as an overall net negative charge. To identify those residues essential for DNA binding, we made use of a naturally occurring derivative of p65, lacking residues 222 to 231 (hereafter referred to as p65 delta), and produced via an alternative splice site. Gel mobility shift analysis using bacterially expressed p65, p65 delta, and various mutants indicates that residues 222 to 231 are important for binding to kappa B DNA. Coimmunoprecipitation analysis suggests that these residues likely contribute to the multimerization function required for homomeric complex formation or heteromeric complex formation with p50 in that no association of p65 delta with itself or with p50 was evident. However, p65 delta was able to form weak heteromeric complexes with p65 that were greatly reduced in their ability to bind DNA. On the basis of these findings, we suggest that subtle changes within the proposed multimerization domain can elicit different effects with the individual Rel-related proteins and that a potential role of p65 delta may be to negatively regulate NF-kappa B function through formation of nonfunctional heteromeric complexes.


2005 ◽  
Vol 387 (2) ◽  
pp. 401-409 ◽  
Author(s):  
Jolanta KOPEC ◽  
Alexander BERGMANN ◽  
Gerhard FRITZ ◽  
Elisabeth GROHMANN ◽  
Walter KELLER

TraA is the DNA relaxase encoded by the broad-host-range Grampositive plasmid pIP501. It is the second relaxase to be characterized from plasmids originating from Gram-positive organisms. Full-length TraA (654 amino acids) and the N-terminal domain (246 amino acids), termed TraAN246, were expressed as 6×His-tagged fusions and purified. Small-angle X-ray scattering and chemical cross-linking proved that TraAN246 and TraA form dimers in solution. Both proteins revealed oriTpIP501 (origin of transfer of pIP501) cleavage activity on supercoiled plasmid DNA in vitro. oriT binding was demonstrated by electrophoretic mobility shift assays. Radiolabelled oligonucleotides covering different parts of oriTpIP501 were subjected to binding with TraA and TraAN246. The KD of the protein–DNA complex encompassing the inverted repeat, the nick site and an additional 7 bases was found to be 55 nM for TraA and 26 nM for TraAN246. The unfolding of both protein constructs was monitored by measuring the change in the CD signal at 220 nm upon temperature change. The unfolding transition of both proteins occurred at approx. 42 °C. CD spectra measured at 20 °C showed 30% α-helix and 13% β-sheet for TraA, and 27% α-helix and 18% β-sheet content for the truncated protein. Upon DNA binding, an enhanced secondary structure content and increased thermal stability were observed for the TraAN246 protein, suggesting an induced-fit mechanism for the formation of the specific relaxase–oriT complex.


2007 ◽  
Vol 282 (46) ◽  
pp. 33326-33335 ◽  
Author(s):  
David Corbett ◽  
Hayley J. Bennett ◽  
Hamdia Askar ◽  
Jeffrey Green ◽  
Ian S. Roberts

In this paper, we present the first evidence of a role for the transcriptional regulator SlyA in the regulation of transcription of the Escherichia coli K5 capsule gene cluster and demonstrate, using a combination of reporter gene fusions, DNase I footprinting, and electrophoretic mobility shift assays, the dependence of transcription on the functional interplay between H-NS and SlyA. Both SlyA and H-NS bind to multiple overlapping sites within the promoter in vitro, but their binding is not mutually exclusive, resulting in a remodeled nucleoprotein complex. In addition, we show that expression of the E. coli slyA gene is temperature-regulated, positively autoregulated, and independent of H-NS.


1992 ◽  
Vol 118 (4) ◽  
pp. 775-784 ◽  
Author(s):  
B Lüscher ◽  
R N Eisenman

The c-myc and c-myb proto-oncogenes encode phosphorylated nuclear DNA binding proteins that are likely to be involved in transcriptional regulation. Here we demonstrate that both Myc and Myb proteins are hyperphosphorylated during mitosis. In the case of Myb, hyperphosphorylation is accompanied by the appearance of three M phase-specific tryptic phosphopeptides. At least one of these phosphopeptides corresponds to a phosphopeptide generated after phosphorylation of Myb in vitro by p34cdc2 kinase. By contrast, the mitotic hyperphosphorylation of Myc does not correlate with the appearance of unique phosphopeptides, suggesting that M phase and interphase sites may be clustered within the same peptides. In addition Myc does not appear to be a target for p34cdc2 phosphorylation. The hyperphosphorylated forms of Myc and Myb from mitotic cells are functionally distinct from the corresponding interphase proteins in that the former have reduced ability to bind nonspecificially to double-stranded DNA cellulose. Furthermore, mitotic Myb binds poorly to oligodeoxynucleotides containing an Myb response element. We surmise that the decreased DNA binding capacity of hyperphosphorylated Myb and Myc during M phase may function to release these proteins from chromatin during chromosome condensation.


2006 ◽  
Vol 394 (2) ◽  
pp. 379-387 ◽  
Author(s):  
Hongtao Guo ◽  
Chengjiang Gao ◽  
Zhiyong Mi ◽  
Philip Y. Wai ◽  
Paul C. Kuo

In IL-1β (interleukin 1β)-stimulated rat hepatocytes exposed to superoxide, we have previously identified an IRX (inflammatory redox)-sensitive DR1 [direct repeat of RG(G/T)TCA with one base spacing] cis-acting activator element (nt –1327 to –1315) in the iNOS (inducible nitric oxide synthase) promoter: AGGTCAGGGGACA. The corresponding transcription factor was identified to be HNF4α (hepatocyte nuclear factor-4α). HNF4α DNA binding activity and transactivation potential are tightly regulated by its state of phosphorylation. However, the functional consequences of IRX-mediated post-translational phosphorylation of HNF4α have not been well characterized. In the setting of IL-1β+H2O2, HNF4α functional activity is associated with a unique serine/threonine phosphorylation pattern. This indicates that an IRX-sensitive serine/threonine kinase pathway targets HNF4α to augment hepatocyte iNOS transcription. In the present study, following identification of phosphorylated residues in HNF4α, serial mutations were performed to render the target residues phosphorylation-resistant. Electrophoretic mobility-shift assays and transient transfection studies utilizing the iNOS promoter showed that the S158A mutation ablates IRX-mediated HNF4α DNA binding and transactivation. Gain-of-function mutation with the S158D phosphomimetic HNF4α vector supports a critical role for Ser158 phosphorylation. In vitro phosphorylation and kinase inhibitor studies implicate p38 kinase activity. Our results indicate that p38 kinase-mediated Ser158 phosphorylation is essential for augmentation of the DNA binding and transactivation potential of HNF4α in the presence of IL-1β+H2O2. This pathway results in enhanced iNOS expression in hepatocytes exposed to pro-inflammatory cytokines and oxidative stress.


1989 ◽  
Vol 9 (6) ◽  
pp. 2464-2476
Author(s):  
M Cockell ◽  
B J Stevenson ◽  
M Strubin ◽  
O Hagenbüchle ◽  
P K Wellauer

Footprint analysis of the 5'-flanking regions of the alpha-amylase 2, elastase 2, and trypsina genes, which are expressed in the acinar pancreas, showed multiple sites of protein-DNA interaction for each gene. Competition experiments demonstrated that a region from each 5'-flanking region interacted with the same cell-specific DNA-binding activity. We show by in vitro binding assays that this DNA-binding activity also recognizes a sequence within the 5'-flanking regions of elastase 1, chymotrypsinogen B, carboxypeptidase A, and trypsind genes. Methylation interference and protection studies showed that the DNA-binding activity recognized a bipartite motif, the subelements of which were separated by integral helical turns of DNA. The alpha-amylase 2 cognate sequence was found to enhance in vivo transcription of its own promoter in a cell-specific manner, which identified the DNA-binding activity as a transcription factor (PTF 1). The observation that PTF 1 bound to DNA sequences that have been defined as transcriptional enhancers by others suggests that this factor is involved in the coordinate expression of genes transcribed in the acinar pancreas.


Sign in / Sign up

Export Citation Format

Share Document