scholarly journals SARS-CoV-2 variant Omicron (B.1.1.529) is in a rising trend of mutations increasing the positive electric charge in crucial regions of spike protein S.

Author(s):  
Piotr Pawłowski

An increase in the positive electric charge of SARS-CoV-2 variant Omicron (B.1.1.529) was reported and the electrostatic interaction between spike protein S and ACE2 receptor was estimated.

Author(s):  
Ashish Shah ◽  
Vaishali Patel ◽  
Bhumika Parmar

Background: Novel Corona virus is a type of enveloped viruses with a single stranded RNA enclosing helical nucleocapsid. The envelope consists of spikes on the surface which are made up of proteins through which virus enters into human cells. Until now there is no specific drug or vaccine available to treat COVID-19 infection. In this scenario, reposting of drug or active molecules may provide rapid solution to fight against this deadly disease. Objective: We had selected 30 phytoconstituents from the different plants which are reported for antiviral activities against corona virus (CoVs) and performed insilico screening to find out phytoconstituents which have potency to inhibit specific target of novel corona virus. Methods: We had perform molecular docking studies on three different proteins of novel corona virus namely COVID-19 main protease (3CL pro), papain-like protease (PL pro) and spike protein (S) attached to ACE2 binding domain. The screening of the phytoconstituents on the basis of binding affinity compared to standard drugs. The validations of screened compounds were done using ADMET and bioactivity prediction. Results: We had screened five compounds biscoclaurine, norreticuline, amentoflavone, licoricidin and myricetin using insilico approach. All compounds found safe in insilico toxicity studies. Bioactivity prediction reviles that these all compounds may act through protease or enzyme inhibition. Results of compound biscoclaurine norreticuline were more interesting as this biscoclaurine had higher binding affinity for the target 3CLpro and PLpro targets and norreticuline had higher binding affinity for the target PLpro and Spike protein. Conclusion: Our study concludes that these compounds could be further explored rapidly as it may have potential to fight against COVID-19.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 821
Author(s):  
Rohitash Yadav ◽  
Jitendra Kumar Chaudhary ◽  
Neeraj Jain ◽  
Pankaj Kumar Chaudhary ◽  
Supriya Khanra ◽  
...  

Coronavirus belongs to the family of Coronaviridae, comprising single-stranded, positive-sense RNA genome (+ ssRNA) of around 26 to 32 kilobases, and has been known to cause infection to a myriad of mammalian hosts, such as humans, cats, bats, civets, dogs, and camels with varied consequences in terms of death and debilitation. Strikingly, novel coronavirus (2019-nCoV), later renamed as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), and found to be the causative agent of coronavirus disease-19 (COVID-19), shows 88% of sequence identity with bat-SL-CoVZC45 and bat-SL-CoVZXC21, 79% with SARS-CoV and 50% with MERS-CoV, respectively. Despite key amino acid residual variability, there is an incredible structural similarity between the receptor binding domain (RBD) of spike protein (S) of SARS-CoV-2 and SARS-CoV. During infection, spike protein of SARS-CoV-2 compared to SARS-CoV displays 10–20 times greater affinity for its cognate host cell receptor, angiotensin-converting enzyme 2 (ACE2), leading proteolytic cleavage of S protein by transmembrane protease serine 2 (TMPRSS2). Following cellular entry, the ORF-1a and ORF-1ab, located downstream to 5′ end of + ssRNA genome, undergo translation, thereby forming two large polyproteins, pp1a and pp1ab. These polyproteins, following protease-induced cleavage and molecular assembly, form functional viral RNA polymerase, also referred to as replicase. Thereafter, uninterrupted orchestrated replication-transcription molecular events lead to the synthesis of multiple nested sets of subgenomic mRNAs (sgRNAs), which are finally translated to several structural and accessory proteins participating in structure formation and various molecular functions of virus, respectively. These multiple structural proteins assemble and encapsulate genomic RNA (gRNA), resulting in numerous viral progenies, which eventually exit the host cell, and spread infection to rest of the body. In this review, we primarily focus on genomic organization, structural and non-structural protein components, and potential prospective molecular targets for development of therapeutic drugs, convalescent plasm therapy, and a myriad of potential vaccines to tackle SARS-CoV-2 infection.


Author(s):  
Davide F. Robbiani ◽  
Christian Gaebler ◽  
Frauke Muecksch ◽  
Julio C. C. Lorenzi ◽  
Zijun Wang ◽  
...  

AbstractDuring the COVID-19 pandemic, SARS-CoV-2 infected millions of people and claimed hundreds of thousands of lives. Virus entry into cells depends on the receptor binding domain (RBD) of the SARS-CoV-2 spike protein (S). Although there is no vaccine, it is likely that antibodies will be essential for protection. However, little is known about the human antibody response to SARS-CoV-21–5. Here we report on 149 COVID-19 convalescent individuals. Plasmas collected an average of 39 days after the onset of symptoms had variable half-maximal neutralizing titers ranging from undetectable in 33% to below 1:1000 in 79%, while only 1% showed titers >1:5000. Antibody cloning revealed expanded clones of RBD-specific memory B cells expressing closely related antibodies in different individuals. Despite low plasma titers, antibodies to three distinct epitopes on RBD neutralized at half-maximal inhibitory concentrations (IC50s) as low as single digit ng/mL. Thus, most convalescent plasmas obtained from individuals who recover from COVID-19 do not contain high levels of neutralizing activity. Nevertheless, rare but recurring RBD-specific antibodies with potent antiviral activity were found in all individuals tested, suggesting that a vaccine designed to elicit such antibodies could be broadly effective.


2006 ◽  
Vol 80 (14) ◽  
pp. 6794-6800 ◽  
Author(s):  
Fang Li ◽  
Marcelo Berardi ◽  
Wenhui Li ◽  
Michael Farzan ◽  
Philip R. Dormitzer ◽  
...  

ABSTRACT The severe acute respiratory syndrome coronavirus enters cells through the activities of a spike protein (S) which has receptor-binding (S1) and membrane fusion (S2) regions. We have characterized four sequential states of a purified recombinant S ectodomain (S-e) comprising S1 and the ectodomain of S2. They are S-e monomers, uncleaved S-e trimers, cleaved S-e trimers, and dissociated S1 monomers and S2 trimer rosettes. Lowered pH induces an irreversible transition from flexible, L-shaped S-e monomers to clove-shaped trimers. Protease cleavage of the trimer occurs at the S1-S2 boundary; an ensuing S1 dissociation leads to a major rearrangement of the trimeric S2 and to formation of rosettes likely to represent clusters of elongated, postfusion trimers of S2 associated through their fusion peptides. The states and transitions of S suggest conformational changes that mediate viral entry into cells.


Author(s):  
Pritha Ghosh ◽  
Savita Jayaram ◽  
Dhruti Patwardhan ◽  
Saranya Marimuthu ◽  
Patrick Lenehan ◽  
...  

Several recent surges in COVID-19 cases due to newly emerging variant strains of SARS-CoV-2 with greater transmissibility have highlighted the virus’s capability to directly modulate spike-ACE2 interactions and promote immune evasion by sterically masking the immunogenic epitopes. Recently, there have also been reports of the bidirectional transfer of coronavirus between different animal species and humans. The ability of coronavirus to infect and adapt to a wide range of hosts can be attributed to new variants that modify the molecular recognition profile of the spike protein (S protein). The receptor-binding domain of the spike protein specifically interacts with key host receptor molecules present on the host cell membranes to gain entry into the host and begin the infection cycle. In this review, we discuss the molecular, structural, and functional diversity associated with the coronavirus receptors across their different phylogenetic lineages and its relevance to various symptomatology in the rapid human-to-human infection in COVID-19 patients, tropism, and zoonosis. Despite this seeming diversity of host receptors, there may be some common underlying mechanisms that influence the host range, virus transmissibility, and pathogenicity. Understanding these mechanisms may be crucial in not only controlling the ongoing pandemic but also help in stopping the resurgence of such virus threats in the future.


2020 ◽  
Author(s):  
Eman Ali Awadelkareem ◽  
Sumaia Awad Elkariem Ali

Abstract Background: Infectious bronchitis (IB) is a highly contagious respiratory disease in chickens and produces economic loss within the poultry industry. This disease is caused by a single stranded RNA virus belonging to Cronaviridae family. This study aimed to design a potential multi-epitopes vaccine against Infectious bronchitis virus spike protein (S). Protein characterization was also performed for IBV spike protein.Methods: The present study used various tools in Immune Epitope Database (IEDB) to predict conserved B and T cell epitopes against IBV spike (S) protein that may perform a significant role in provoking the resistance response to IBV infection. Results: In B cell prediction methods, three epitopes (1139KKSSYY1144, 1140KSSYYT1145, 1141SSYYT1145) were selected as surface, linear and antigenic epitopes. Many MHCI and MHCII epitopes were predicted for IBV S protein. Among them 982YYITARDMY990 and 983YITARDMYM991 epitopes displayed high antigenicity, no allergenicity and no toxicity as well as great linkage with MHCI and MHCII alleles. Moreover, docking analysis of MHCI epitope produced strong binding affinity with BF2 alleles. Conclusion: Five conserved epitopes were expected from spike glycoprotein of IBV as the best B and T cell epitopes due to high antigenicity, no allergenicity and no toxicity. In addition, MHC epitopes showed great linkage with MHC alleles as well as strong interaction with BF2 alleles. These epitopes should be designed and incorporated and then tested as multi-epitope vaccine against IBV.


Author(s):  
Micholas Smith ◽  
Jeremy C. Smith

The novel Wuhan coronavirus (SARS-CoV-2) has been sequenced, and the virus shares substantial similarity with SARS-CoV. Here, using a computational model of the spike protein (S-protein) of SARS-CoV-2 interacting with the human ACE2 receptor, we make use of the world's most powerful supercomputer, SUMMIT, to enact an ensemble docking virtual high-throughput screening campaign and identify small-molecules which bind to either the isolated Viral S-protein at its host receptor region or to the S protein-human ACE2 interface. We hypothesize the identified small-molecules may be repurposed to limit viral recognition of host cells and/or disrupt host-virus interactions. A ranked list of compounds is given that can be tested experimentally.<br>


2021 ◽  
Author(s):  
George W. Carnell ◽  
Katarzyna A. Ciazynska ◽  
David A. Wells ◽  
Xiaoli Xiong ◽  
Ernest T. Aguinam ◽  
...  

AbstractThe majority of SARS-CoV-2 vaccines in use or in advanced clinical development are based on the viral spike protein (S) as their immunogen. S is present on virions as pre-fusion trimers in which the receptor binding domain (RBD) is stochastically open or closed. Neutralizing antibodies have been described that act against both open and closed conformations. The long-term success of vaccination strategies will depend upon inducing antibodies that provide long-lasting broad immunity against evolving, circulating SARS-CoV-2 strains, while avoiding the risk of antibody dependent enhancement as observed with other Coronavirus vaccines. Here we have assessed the results of immunization in a mouse model using an S protein trimer that is arrested in the closed state to prevent exposure of the receptor binding site and therefore interaction with the receptor. We compared this with a range of other modified S protein constructs, including representatives used in current vaccines. We found that all trimeric S proteins induce a long-lived, strongly neutralizing antibody response as well as T-cell responses. Notably, the protein binding properties of sera induced by the closed spike differed from those induced by standard S protein constructs. Closed S proteins induced more potent neutralising responses than expected based on the degree to which they inhibit interactions between the RBD and ACE2. These observations suggest that closed spikes recruit different, but equally potent, virus-inhibiting immune responses than open spikes, and that this is likely to include neutralizing antibodies against conformational epitopes present in the closed conformation. Together with their improved stability and storage properties we suggest that closed spikes may be a valuable component of refined, next-generation vaccines.


Author(s):  
Federico Cocozza ◽  
Ester Piovesana ◽  
Nathalie Névo ◽  
Xavier Lahaye ◽  
Julian Buchrieser ◽  
...  

ABSTRACTSARS-CoV-2 entry is mediated by binding of the spike protein (S) to the surface receptor ACE2 and subsequent priming by TMPRRS2 allowing membrane fusion. Here, we produced extracellular vesicles (EVs) exposing ACE2 and demonstrate that ACE2-EVs are efficient decoys for SARS-CoV-2 S protein-containing lentivirus. Reduction of infectivity positively correlates with the level of ACE2, is 500 to 1500 times more efficient than with soluble ACE2 and further enhanced by the inclusion of TMPRSS2.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Erik Laurini ◽  
Domenico Marson ◽  
Suzana Aulic ◽  
Alice Fermeglia ◽  
Sabrina Pricl

AbstractThe purpose of this work is to provide an in silico molecular rationale of the role eventually played by currently circulating mutations in the receptor binding domain of the SARS-CoV-2 spike protein (S-RBDCoV‑2) in evading the immune surveillance effects elicited by the two Eli Lilly LY-CoV555/bamlanivimab and LY-CoV016/etesevimab monoclonal antibodies. The main findings from this study show that, compared to the wild-type SARS-CoV-2 spike protein, mutations E484A/G/K/Q/R/V, Q493K/L/R, S494A/P/R, L452R and F490S are predicted to be markedly resistant to neutralization by LY-CoV555, while mutations K417E/N/T, D420A/G/N, N460I/K/S/T, T415P, and Y489C/S are predicted to confer LY-CoV016 escaping advantage to the viral protein. A challenge of our global in silico results against relevant experimental data resulted in an overall 90% agreement. Thus, the results presented provide a molecular-based rationale for all relative experimental findings, constitute a fast and reliable tool for identifying and prioritizing all present and newly reported circulating spike SARS-CoV-2 variants with respect to antibody neutralization, and yield substantial structural information for the development of next-generation vaccines and monoclonal antibodies more resilient to viral evolution.


Sign in / Sign up

Export Citation Format

Share Document