scholarly journals A Novel Fluoride Anion Modified Gelatin Nanogel System

2008 ◽  
Vol 11 (4) ◽  
pp. 32 ◽  
Author(s):  
Daocheng Wu ◽  
Mingxi Wan

Purpose. Controlled drug release, especially tumor-targeted drug release, remains a great challenge. Here, we prepare a novel fluoride anion-modified gelatin nanogel system and investigate its characteristics of ultrasound-triggered drug release. Methods. Adriamycin gelatin nanogel modified with fluoride anion (ADM-GNMF) was prepared by a modified co-precipitation method with fluoride anion and sodium sulfate. The loading and encapsulation efficiency of the anti-neoplastic agent adriamycin (ADM) were measured by high performance liquid chromatography (HPLC). The size and shape of ADM-GNMF were determined by electron microscopy and photo-correlation spectroscopy. The size distribution and drug release efficiency of ADM-GNMF, before and after sonication, were measured by two designed measuring devices that consisted of either a submicron particle size analyzer and an ultrasound generator as well as an ultrasound generator, automatic sampler, and HPLC. Results. The ADM-GNMF was stable in solution with an average diameter of 46±12 nm; the encapsulation and loading efficiency of adriamycin were 87.2% and 6.38%, respectively. The ultrasound-triggered drug release and size change were most efficient at a frequency of 20 kHz, power density of 0.4w/cm2, and a 1~2 min duration. Under this ultrasound-triggered condition, 51.5% of drug in ADM-GNMF was released within 1~2 min, while the size of ADM-GNMF changed from 46 ± 12 nm to 1212 ± 35 nm within 1~2 min of sonication and restored to its previous size in 2~3 min after the ultrasound stopped. In contrast, 8.2% of drug in ADM-GNMF was released within 2~3 min without sonication, and only negligible size changes were found. Conclusions. The ADM-GNMF system efficiently released the encompassed drug in response to ultrasound, offering a novel and promising controlled drug release system for targeted therapy for cancer or other diseases.

2018 ◽  
Vol 6 (21) ◽  
pp. 3531-3540 ◽  
Author(s):  
Jun Xiang ◽  
Xia Tong ◽  
Feng Shi ◽  
Qiang Yan ◽  
Bing Yu ◽  
...  

The preparation of a new near-infrared (NIR) light-responsive nanocarrier for controlled drug release is demonstrated.


Author(s):  
Vega Widya Karisma ◽  
Wei Wu ◽  
Mingxing Lei ◽  
Huawen Liu ◽  
Muhammad Farrukh Nisar ◽  
...  

Light has attracted special attention as a stimulus for triggered drug delivery systems (DDS) due to its intrinsic features of being spatially and temporally tunable. Ultraviolet A (UVA) radiation has recently been used as a source of external light stimuli to control the release of drugs using a “switch on- switch off” procedure. This review discusses the promising potential of UVA radiation as the light source of choice for photo-controlled drug release from a range of photo-responsive and photolabile nanostructures via photo-isomerization, photo-cleavage, photo-crosslinking, and photo-induced rearrangement. In addition to its clinical use, we will also provide here an overview of the recent UVA-responsive drug release approaches that are developed for phototherapy and skin photoprotection.


2021 ◽  
Vol 14 (4) ◽  
pp. 291
Author(s):  
Narsimha Mamidi ◽  
Ramiro Manuel Velasco Delgadillo ◽  
Enrique V. Barrera

Herein, poly (n-(4-aminophenyl) methacrylamide)) carbon nano-onions (PAPMA-CNOs = f-CNOs) and γ-cyclodextrin/DOX-complex (CD) reinforced gelatin methacryloyl (GelMA)/f-CNOs/CD supramolecular hydrogel interfaces were fabricated using the photo-crosslinking technique. The physicochemical properties, morphology, biodegradation, and swelling properties of hydrogels were investigated. The composite hydrogels demonstrated enriched drug release under the acidic conditions (pH 4.5 = 99%, and pH 6.0 = 82%) over 18 days. Owing to the f-CNOs inclusion, GelMA/f-CNOs/CD supramolecular hydrogels presented augmented tensile strength (σult = 356.1 ± 3.4 MPa), toughness (K = 51.5 ± 0.24 Jg−1), and Young’s modulus (E = 41.8 ± 1.4 GPa). The strengthening of GelMA/f-CNOs/CD hydrogel systems indicates its good dispersion and the degree of polymer enveloping of f-CNOs within GelMA matrixes. Furthermore, the obtained hydrogels showed improved cell viability with human fibroblast cells. Nevertheless, the primed supramolecular hydrogels would pave the way for the controlled delivery systems for future drug delivery.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Ranran Zhang ◽  
Risheng Yao ◽  
Binbin Ding ◽  
Yuxin Shen ◽  
Shengwen Shui ◽  
...  

Low tissue penetration and harmful effects of (ultraviolet) UV or visible light on normal tissue limit exploiting nanocarriers for the application of light-controlled drug release. Two strategies may solve the problem: one is to improve the sensitivity of the nanocarriers to light to decrease the radiation time; the other one is using more friendly light as the trigger. In this work, we fabricated a core-shell hybrid nanoparticle with an upconverting nanoparticle (UCNP) as the core and thermo- and light-responsive block copolymers as the shell to combine the two strategies together. The results indicated that the sensitivity of the block copolymer to light could be enhanced by decreasing the photolabile moieties in the polymer, and the UCNP could transfer near-infrared (NIR) light, which is more friendly to tissue and cell, to UV light to trigger the phase conversion of the block polymersin situ. Using Nile Red (NR) as the model drug, the hybrid nanoparticles were further proved to be able to act as carriers with the character of NIR triggered drug release.


2018 ◽  
Vol 5 (4) ◽  
pp. 172186 ◽  
Author(s):  
Zhenhe Xu ◽  
He Yu ◽  
Feixue Ai ◽  
Guiyan Zhao ◽  
Yanfeng Bi ◽  
...  

Hollow lanthanide-doped compounds are some of the most popular materials for high-performance luminescent devices. However, it is challenging to find an approach that can fabricate large-scale and well-crystallized lanthanide-doped hollow structures and that is facile, efficient and of low cost. In this study, YBO 3 : Eu 3+ /Tb 3+ hollow microspheres were fabricated by using a novel multi-step transformation synthetic route for the first time with polystyrene spheres as the template, followed by the combination of a facile homogeneous precipitation method, an ion-exchange process and a calcination process. The results show that the as-obtained YBO 3 : Eu 3+ /Tb 3+ hollow spheres have a uniform morphology with an average diameter of 1.65 µm and shell thickness of about 160 nm. When used as luminescent materials, the emission colours of YBO 3 : Eu 3+ /Tb 3+ samples can be tuned from red, through orange, yellow and green-yellow, to green by simply adjusting the relative doping concentrations of the activator ions under the excitation of ultraviolet light, which might have potential applications in fields such as light display systems and optoelectronic devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 5269-5276 ◽  
Author(s):  
Qingjian Xing ◽  
Najun Li ◽  
Yang Jiao ◽  
Dongyun Chen ◽  
Jiaying Xu ◽  
...  

The core–shell nanocarrier, based on spiropyran-containing copolymer coated upconversion nanocomposites, was successfully prepared via a facile self-assembly process for NIR-triggered drug release and cancer therapy.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2521 ◽  
Author(s):  
Valentina Grumezescu ◽  
Oana Gherasim ◽  
Irina Negut ◽  
Stefan Banita ◽  
Alina Maria Holban ◽  
...  

We report on the synthesis and evaluation of biopolymeric spheres of poly(lactide-co-glycolide) containing different amounts of magnetite nanoparticles and Ibuprofen (PLGA-Fe3O4-IBUP), but also chitosan (PLGA-CS-Fe3O4-IBUP), to be considered as drug delivery systems. Besides morphological, structural, and compositional characterizations, the PLGA-Fe3O4-IBUP composite microspheres were subjected to drug release studies, performed both under biomimetically-simulated dynamic conditions and under external radiofrequency magnetic fields. The experimental data resulted by performing the drug release studies evidenced that PLGA-Fe3O4-IBUP microspheres with the lowest contents of Fe3O4 nanoparticles are optimal candidates for triggered drug release under external stimulation related to hyperthermia effect. The as-selected microspheres and their chitosan-containing counterparts were biologically assessed on macrophage cultures, being evaluated as biocompatible and bioactive materials that are able to promote cellular adhesion and proliferation. The composite biopolymeric spheres resulted in inhibited microbial growth and biofilm formation, as assessed against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans microbial strains. Significantly improved antimicrobial effects were reported in the case of chitosan-containing biomaterials, regardless of the microorganisms’ type. The nanostructured composite biopolymeric spheres evidenced proper characteristics as prolonged and controlled drug release platforms for multipurpose biomedical applications.


2019 ◽  
Vol 953 ◽  
pp. 101-112
Author(s):  
Zhi Zhang ◽  
Yi Wang Chen ◽  
Xu Liang Lv ◽  
Pin Zhang ◽  
Guang Zhen Cui ◽  
...  

In this paper, a direct co-precipitation method was used to prepare antimony-doped calcium fluoride nanopowders (NPs). The effects of reaction concentration, reaction medium and lanthanum doping on the properties of calcium fluoride NPs were investigatedviaa control variable method and the best preparation conditions was identified. The structural analysis of the powder materials prepared in this work were carried out by XRD, SEM, ICP and other test methods. By analyzing the experimental data, we found that the best performance of Eu-doped CaF2NPs can be acquired under the reaction concentration of 1 mol/L in aqueous solution. In the same time, the NPs possess a high degree of dispersion with an average diameter of 22 nm, which is beneficial to the preparation of transparent Eu3+: CaF2ceramics with excellent up-conversion luminescence. The results show that the grain size, the crystallinity of the NPs and the amount of Eu infiltration have a decreasing tendency with the increasing reaction concentration, while the degree of agglomeration of the NPs can be enhanced by increasing the reaction concentration.


Author(s):  
Jain Pushpendra ◽  
Mishra Amit ◽  
Yadav K. ◽  
Patil K. ◽  
Baghel S.

The aim of this study was to prepare nimesulide solid lipid nanoparticles (NIM-SLNs), to formulate the controlled drug release and to evaluate its physiochemical characteristics. NIM-SLNs were prepared by an emulsification and low-temperature solidification method. Additionally, attempts have been made to study the effect of individual process parameters (stirring speed and stirring time) and formulation parameters (Lecithin concentration, drug concentration and surfactant concentration) on entrapment efficiency. An approximately entrapment efficiency of (60%) and an average drug loading of (1.0 %) were achieved from optimized formulation of NIM-SLNs. The results show that the TMZ-SLNs had an average diameter of 187±1.23nm and in vitro drug release was conducted in phosphate-buffered saline (pH 7.4) at 37oC. The cumulative percentages drug release of nimesulide was found approximately 60% in 24 hours and release behavior was in accordance with Higuchi-equation. The results indicate that the SLNs is a promising controlled-release system. It may also allow a reduction in dosage and a decrease in systemic toxicity.


2016 ◽  
Vol 4 (46) ◽  
pp. 7415-7422 ◽  
Author(s):  
Jingru Shi ◽  
Hongbin Zhang ◽  
John Jackson ◽  
Ali Shademani ◽  
Mu Chiao

A refillable sponge capsule was fabricated for controlled drug release with prolonged period triggered by external magnetic stimuli.


Sign in / Sign up

Export Citation Format

Share Document