scholarly journals ECOLOGICAL AND GEOCHEMICAL CHARACTERISTICS OF SHALLOW GROUNDWATER IN SOUTHERN BUG AND SYNIUKHA INTERFLUVE AREA

2021 ◽  
Vol 26 (1(38)) ◽  
pp. 149-168
Author(s):  
D. V. Melkonyan ◽  
E. A. Cherkez ◽  
V. G. Tyuremina

Problem Statement and purpose. The study area encompassing the territory of about 150 km2, in August 2000, was declared as a zone of environmental emergency due to increasing pollution rates in shallow groundwater, in surface water and to health deterioration of the inhabitants of some settlements. Groundwater is widely used by the local population in numerous boreholes for domestic and agricultural purposes. In the zone of environmental emergency there are about 35 anthropogenic objects, such as: industrial and domestic landfills, pesticide and fertilizer storage, various livestock farm complexes, settling tanks, wastewater and solid waste discharges, etc. The insecurity of shallow groundwater, also its location close to the surface and in the lowest parts of the terrain leads to intensive pollution of groundwater. Besides, groundwater in relation to the fractured waters of the Precambrian crystalline rocks, which lie below and are used for drinking water supply, perform the functions of both a protective screen and a source of pollution. In this case, a multifaceted study of shallow groundwater chemical composition and their formation conditions is a priority task of this study for the environmental emergency zone and for the district as a whole. The purpose of this paper to study the chemical composition and to establish the processes and factors controlling the shallow groundwater chemistry in modern and Pleistocene sediments of the Southern Bug and Syniukha interfluve. Data and Methods. A total of 102 water samples were collected from groundwater wells and boreholes and were hydrochemically analyzed for their macrocomponent composition. Groundwater quality geochemical assessment was carried out using statistical methods in combination with conventional graphical methods by examining groundwater in the Boleslavchik village, where they are most polluted. Results. The dominant hydrochemical types of shallow groundwater are SO4- Na, HCO3-Na and mixed SO4-Mg-Na, SO4-Ca-Na types, sometimes NO3-HCO3 and NO3-Cl-Na types. These groundwater types are formed under the influence of natural and anthropogenic factors, such as water-rock interaction, evaporation-crystallization, precipitation and anthropogenic impact. In this case, water-rock interaction processes, such as silicate weathering, carbonate and sulfate dissolution, ion exchange, evaporation-crystallization and anthropogenic impact play major roles. The weathering of feldspars, chlorites and dissolution of calcites, dolomites are the primary sources for Na+, K+, Mg2+, Ca2+ ions, and dissolution of gypsum, sulfide mineralization for SO4 2– ions. High concentrations of Na+, Cl–, SO4 2–, NO3 – in shallow groundwater reflect agricultural activity as the main source of these ions.

2019 ◽  
Vol 98 ◽  
pp. 01024
Author(s):  
Irina Ivanova

In the central part of Western Siberia a study of the chemical composition of fresh underground waters in the upper 600 m of the Sredneobskoy artesian basin was carried out. It was shown that underground waters generally contain high concentrations of strontium. The minimum concentrations of Sr are typical for Neogene-Quaternary sediments (600 µg/L), maximum values in the waters of the Upper Cretaceous sediments (more than 1300 µg/L). The study of strontium accumulation mechanisms in drinking underground waters is undoubtedly an important issue, as strontium is a biologically active element. Especially dangerous is the consumption of underground waters with a calcium-strontium ratio less than 100, that is the hydrogeochemical precondition for Urov endemic (Kashin-Beck disease). According to the calcium/strontium ratios data waters of the Neogene-Quaternary and Paleogene sediments selected in the south-western part of the Tomsk region are unsuitable for drinking water supply. Underground waters are shown to be in equilibrium with Al and Fe hydroxides; Ca, Mg, Fe carbonates; and clay minerals, including ferruginous. Increased strontium content in aquifers is determined not only by the chemical composition of the water-bearing rocks, but also increasing resident time of water rock interaction.


2018 ◽  
Vol 24 (3) ◽  
pp. 305-315 ◽  
Author(s):  
Giovanni Vespasiano ◽  
Pasqualino Notaro ◽  
Giuseppe Cianflone

Abstract In this work, we analyzed the results of a geochemical analysis aimed to define the origin of pH anomalies (pH > 11) in water samples collected inside a tunnel located in southern Calabria (southern Italy). We also analyzed the precipitates found close to the main drainage pipes. The hydrogeochemical study allowed us to identify a main NaOH water facies for the many samples collected close to the tunnel. In addition, the correlation diagrams highlighted high concentrations of Na, K, and Al, unrelated to simple water-rock interaction. Further evaluation excluded the possibility that interaction between the water and the outcropping lithologies was the only cause of the ongoing processes. This consideration is supported by the high Na and K concentrations, which cannot be accounted for by interaction between water and calcareous marl. Excluding a natural origin and some anthropogenic factors, one possible explanation is an interaction between the groundwater and the mortars used for consolidation during the excavation phase of the tunnel. Mortar and concrete degradation in aqueous environments produces a great increase in pH, initially deriving from interstitial fluids containing strong alkali (NaOH and KOH) and non-negligible K and Na concentrations, such as we observed in the collected samples.


2020 ◽  
Vol 6 (2) ◽  
pp. 318-325 ◽  
Author(s):  
Baazi Houria ◽  
Kalla Mahdi ◽  
Tebbi Fatima Zohra

The objective of this work is to evaluate the physico-chemical quality of the groundwater of the Merdja plain and to determine the sources of mineralization. This quality is influenced by several environmental and anthropogenic factors such as geological context, climate, precipitation and interaction between groundwater and aquifers and human activities.  A Principal Component Analysis (PCA) on samples taken from several wells spread over the entire Tebessa plain (Merdja) allowed us to detect two axes that explain 73.4% of the information. The first axis describes the variables related to mineralisation and the second one describes those related to agricultural activity. Multidimensional Positioning (MDS) confirmed the interaction of physico-chemical parameters between them and their influence on groundwater quality by highlighting three groups of wells according to their physico-chemical characteristics, particularly those containing high concentrations of nitrates. This contamination is mainly the result of spreading the fertilisers and wastes that are dumped into the plain without treatment. Salinization is the result of long-term interactions between groundwater and geological formations.


2019 ◽  
Vol 98 ◽  
pp. 01054
Author(s):  
Elena Zippa ◽  
Ivan Bragin ◽  
George Chelnokov ◽  
Natalia Kharitonova

Chemical composition and saturation degree of the Annenskiy thermal waters to minerals of water-bearing rock have been considered in the manuscript. It is shown that the thermal waters are low mineralized, alkaline and belong to HCO3-Na type. The thermal waters-rock system is equilibrium-nonequilibrium. It means that the waters dissolve primary minerals continuously, never reaching saturation (anorthite, K-field spar and etc.), and form new secondary mineral phases simultaneously, reaching saturation (gibbsite, montmorillonite, albite and etc.). Besides, peculiarities of the equilibrium with minerals of water-bearing rocks for surface and ground waters of the studied region was considered. It is established that the thermal waters are ahead of surface and ground waters and represent the certain stage of the water-rock system evolution. The stage is characterized by the certain chemical composition (TDS=148-317 mg/L, HCO3-Na, SiO2=9-80 mg/L), complex of secondary minerals (calcite, albite, laumontite and etc.) and special geochemical environment (pH 8.2-8.6).


2012 ◽  
Vol 16 (1) ◽  
pp. 157-166 ◽  
Author(s):  
I. Delgado-Outeiriño ◽  
P. Araujo-Nespereira ◽  
J. A. Cid-Fernández ◽  
J. C. Mejuto ◽  
E. Martínez-Carballo ◽  
...  

Abstract. Hydrothermic features in Galicia (northwest Spain) have been used since ancient times for therapeutic purposes. A characterization of these thermal waters was carried out in order to understand their behaviour based on inorganic pattern and water-rock interaction mechanisms. In this way 15 thermal water samples were collected in the same hydrographical system. The selected thermal water samples were classified using principal component analysis (PCA) and partial least squares (PLS) regression analysis in two groups according to their chemical composition: group I with the young water samples and group II with the samples with longest water-rock contact time. This classification agreed with the results obtained by the use of geothermometers and hydrogeochemical modelling, where the samples were classified into two categories according their residence time in the reservoir and their water-rock interaction.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1185-1188
Author(s):  
Tong Qiang Peng ◽  
Feng Juan Zhang ◽  
Li Ting Xing ◽  
Yan Cheng Han ◽  
Zhao Han ◽  
...  

Shallow inland water resources has a large potential for development. To Jiyang shallow groundwater for example, through the regular ion-test analysis, Piper diagram and hydrogeochemical characteristics, the results show that: (1) The type of chemistry of shallow groundwater inland were Cl·SO4-Mg·Na·Ca; (2) The salt water area is relatively fixed, there is no expansion or decreasing trend; (3) The level flow of shallow groundwater is slow and water rock interaction is strong, that is not conducive to the shallow groundwater quality improvement, changing the runoff conditions of shallow groundwater is essential way for shallow groundwater resources exploitation.


2014 ◽  
Vol 931-932 ◽  
pp. 716-720 ◽  
Author(s):  
Witchuda Ponsai ◽  
Srilert Chotpantarat

This study focused on quality of shallow groundwater collected around Laemchabang sanitary landfill Chonburi Province, Thailand. The sixteen public shallow wells were collected and analyzed for pH, cations (Ca2+, Mg2+, Na+ and K+), anions (HCO-3, Cl- and SO4 2-) and metals (As, Fe, Mn, Zn and Al). The results were reported by statistical and correlation techniques. It was found that, in some wells, metals such as Fe and Mn exceeded the acceptable limits. Thus, shallow groundwater around Laemchabang Sanitary Landfill would not be suitable for drinking. According to correlation analysis, pH value is positively correlated with HCO-3, Fe and Al. Ca2+ and Mg2+ are positively correlated with HCO-3 and Cl-. Arsenic is positively correlated with Fe and Mn. Most shallow groundwater samples in this area are the mixed type, Ca (Mg)Cl (SO4) type, which may occur from water-rock interaction and leakage from landfill to groundwater system.


Author(s):  
Peter Möller ◽  
Marco De Lucia ◽  
Eliahu Rosenthal ◽  
Nimrod Inbar ◽  
Elias Salameh ◽  
...  

In the Lower Yarmouk Gorge the chemical composition of regional, fresh to brackish, mostly thermal groundwater reveal a zonation in respect to salinization and geochemical evolution, which is seemingly controlled by the Lower Yarmouk fault (LYF) but does not strictly follow the morphological Yarmouk Gorge. South of LYF the artesian Mukeihbeh well field produces in its central segment groundwaters of almost pure basaltic-rock type with low contribution (<0.3 vol-%) of Tertiary brine, hosted in deep Cretaceous and Jurassic formations. Further distal, the contribution of limestone water increases originating from the Ajloun Mts. North of the LYF, the Mezar wells, the springs of Hammat Gader and Ain Himma produce dominantly limestone water, which contains 0.14-3 vol-% of the Tertiary brine and possess hence variable salinity. The total dissolved equivalents of solutes gained by water/rock interaction (WRI) and mixing with brine, TDE(WRI+brine), amounts to 10-70 % in the region comprising the Mukheibeh field, Ain Himma and Mezar 3 well, to 55-70 % in the springs of Hammat Gader, and to 80-90 % in wells Mezar 1 and 2. The type of salinization indicates that the Lower Yarmouk fault seemingly acts as the divide between the Ajloun and the Golan Heigths dominated groundwater.


2019 ◽  
Vol 98 ◽  
pp. 07001
Author(s):  
Musa Ado ◽  
Oluwafemi Adeyeye ◽  
Changlai Xiao ◽  
Xuijuan Liang

This study was aimed at understanding the factors affecting groundwater for the benefit of water resources management. Groundwater collected from 18 sites over an area of 770 Km2 was analysed. Temperature (Temp.), pH, Total Dissolved Solids (TDS) and Electrical Conductivity (EC) were measured in the field and 15 chemical parameters analysed in the laboratory. Factor Analysis (FA) of physiochemical results indicated mineralization, weathering of silicates and K-feldspar, and anthropogenic sources were mainly responsible for groundwater chemistry. Hierarchical Cluster Analysis (HCA) revealed sample clusters were mainly controlled by structure rather than by lithology, water source or altitude because 86% of cluster I samples occurred along a NNE-SSW trending fault zone. It was thus concluded that water-rock interaction, tectonics and anthropogenic factors are responsible for water physiochemistry.


Sign in / Sign up

Export Citation Format

Share Document