scholarly journals Frozen strawberry quality enhancement using high hydrostatic pressure and vacuum infusion with pectin methylesterase and calcium chloride solution

2021 ◽  
Vol 21` (01) ◽  
pp. 17290-17312
Author(s):  
Silvenus O Konyole ◽  
◽  
SO Oiye ◽  
GP Okiror ◽  
◽  
...  

Fresh strawberry(Fragaria x ananassa) is a delicious fruit that is an excellent source of micronutrients and an array of beneficial phytochemicals. Emerging technologies like high pressure freezing and thawing have gained interest recently due to their ability to preserve the structure of the food during storage, albeit the possible shortcomings of degradation of texture and sensory quality. In this study, the effects of high hydrostatic pressure freezing and thawing on the physical quality attributes (texture, drip loss and Degree of Methylation(DM)) of strawberry were investigated. Strawberry samples were infused in a vacuum using pectin methyl esterase(PME) and CaCl2solutionat170 hPa pressure for 5 min at room temperature to improve textural integrity; infused with distilled water; and another group of samples further incubated at 40°C for 20 min. Fresh samples and non-pre treated samples were also studied. All the samples were subjected to high pressure freezing and thawing processes at 200 MPa and the effect of the processing conditions on texture were evaluated. The high pressure processed samples were compared with conventionally frozen and thawed samples.Pectin methyl esterase,CaCl2infusion and incubation gave a relative hardness of 1.5 pre treatment compared to water only infused at 0.5.TheCaCl2and PME-infused samples had a higher relative hardness after one day of storage at -18°C compared to non-pretreated and water-infused samples at 0.3 compared to 0.1,respectively. Pretreated, water-infused, and PME withCaCl2-infused samples showed no significant difference in hardness when measured immediately after conventional thawing and high pressure induced thawing HPIT but are the former are a third less hard compared to the latter upon storage after 3 hours and three months. Galacturonic acid per mg of Alcohol insoluble residues AIR sample for the fresh strawberrywas0.002±2.699E-05 and 0.002±1.070E-05molesfor the one-day vs.three months storage,respectively,for samples conventionally frozen and thawed in duplicate experiments.Therefore,a combination of high-pressure shift freezing (HPSF) with PME and CaCl2infusion improved the texture of the strawberry compared to those that were not pretreated,and gained weight by 15%. The PME and CaCl2-infused strawberry showed less degradation than the non-pretreated and water-infused during both long-and short-time frozen storage. Conventional freezing processes caused more degradation compared to HPSF. Degradation of 3 months conventional freezing was comparable to 1-day storage. For frozen storage, enzyme pretreatment combined with high pressure freezing can be used to enhance the quality of strawberry.

2011 ◽  
Vol 17 (6) ◽  
pp. 541-547 ◽  
Author(s):  
D. Bermúdez-Aguirre ◽  
J. Ángel Guerrero-Beltrán ◽  
G.V. Barbosa-Cánovas ◽  
J. Welti-Chanes

High hydrostatic pressure (HHP) was applied to fresh mango nectar (FMN) and sterilized mango nectar (SMN) to inactivate Escherichia coli and pectin methylesterase (PME). Pressure was applied at 275, 345 and 414 MPa. The come-up time (CUT) as well as 1, 2 and 4 min of treatment times were applied at the selected pressure to evaluate the inactivation effect on E. coli and PME. Total plate counts (TPC) were also evaluated in FMN. Results showed that mesophiles are inactivated in FMN to an important degree (up to 4 log) only with the CUT; the highest inactivation for mesophiles (7 log) was reported at 414 MPa after 4 min. Meanwhile, for E. coli 345 and 414 MPa after 2 and 1 min, respectively, were able to inactivate all viable cells in FMN. However, in SMN after 4 min at 275 MPa all cells of E. coli were also inactivated, showing the protective effect of the media between FMN and SMN. The PME showed its resistance to be inactivated with high pressure, showing the highest decrease in enzymatic activity (45%) after 4 min at 345 MPa but with an important activation at the highest pressure (414 MPa).


Author(s):  
R.E. Crang ◽  
M. Mueller ◽  
K. Zierold

Obtaining frozen-hydrated sections of plant tissues for electron microscopy and microanalysis has been considered difficult, if not impossible, due primarily to the considerable depth of effective freezing in the tissues which would be required. The greatest depth of vitreous freezing is generally considered to be only 15-20 μm in animal specimens. Plant cells are often much larger in diameter and, if several cells are required to be intact, ice crystal damage can be expected to be so severe as to prevent successful cryoultramicrotomy. The very nature of cell walls, intercellular air spaces, irregular topography, and large vacuoles often make it impractical to use immersion, metal-mirror, or jet freezing techniques for botanical material.However, it has been proposed that high-pressure freezing (HPF) may offer an alternative to the more conventional freezing techniques, inasmuch as non-cryoprotected specimens may be frozen in a vitreous, or near-vitreous state, to a radial depth of at least 0.5 mm.


2014 ◽  
Vol 77 (10) ◽  
pp. 1664-1668 ◽  
Author(s):  
TANYA D'SOUZA ◽  
MUKUND KARWE ◽  
DONALD W. SCHAFFNER

Peanut butter has been associated with several large foodborne salmonellosis outbreaks. This research investigates the potential of high hydrostatic pressure processing (HPP) for inactivation of Salmonella in peanut butter of modified composition, both by modifying its water activity as well by the addition of various amounts of nisin. A cocktail of six Salmonella strains associated with peanut butter and nut-related outbreaks was used for all experiments. Different volumes of sterile distilled water were added to peanut butter to increase water activity, and different volumes of peanut oil were added to decrease water activity. Inactivation in 12% fat, light roast, partially defatted peanut flour, and peanut oil was also quantified. Nisaplin was incorporated into peanut butter at four concentrations corresponding to 2.5, 5.0, 12.5, and 25.0 ppm of pure nisin. All samples were subjected to 600 MPa for 18 min. A steady and statistically significant increase in log reduction was seen as added moisture was increased from 50 to 90%. The color of all peanut butter samples containing added moisture contents darkened after high pressure processing. The addition of peanut oil to further lower the water activity of peanut butter further reduced the effectiveness of HPP. Just over a 1-log reduction was obtained in peanut flour, while inactivation to below detection limits (2 log CFU/g) was observed in peanut oil. Nisin alone without HPP had no effect. Recovery of Salmonella after a combined nisin and HPP treatment did show increased log reduction with longer storage times. The maximum log reduction of Salmonella achieved was 1.7 log CFU/g, which was comparable to that achieved by noncycling pressure treatment alone. High pressure processing alone or with other formulation modification, including added nisin, is not a suitable technology to manage the microbiological safety of Salmonella-contaminated peanut butter.


2005 ◽  
Vol 71 (1) ◽  
pp. 339-343 ◽  
Author(s):  
Kevin R. Calci ◽  
Gloria K. Meade ◽  
Robert C. Tezloff ◽  
David H. Kingsley

ABSTRACT Previous results demonstrated that hepatitis A virus (HAV) could be inactivated by high hydrostatic pressure (HHP) (D. H. Kingsley, D. Hoover, E. Papafragkou, and G. P. Richards, J. Food Prot. 65:1605-1609, 2002); however, direct evaluation of HAV inactivation within contaminated oysters was not performed. In this study, we report confirmation that HAV within contaminated shellfish is inactivated by HHP. Shellfish were initially contaminated with HAV by using a flowthrough system. PFU reductions of >1, >2, and >3 log10 were observed for 1-min treatments at 350, 375, and 400 megapascals, respectively, within a temperature range of 8.7 to 10.3�C. Bioconcentration of nearly 6 log10 PFU of HAV per oyster was achieved under simulated natural conditions. These results suggest that HHP treatment of raw shellfish will be a viable strategy for the reduction of infectious HAV.


Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2246
Author(s):  
Andressa Alves de Oliveira ◽  
Alexandre Guedes Torres ◽  
Daniel Perrone ◽  
Mariana Monteiro

Jussara (Euterpe edulis) fruit is a strong candidate for exportation due to its high content of anthocyanins. However, its rapid perishability impairs its potential for further economic exploration, highlighting the relevance of producing ready-to-drink juices by applying innovative processing, such as high hydrostatic pressure (HHP). The effect of HHP (200, 350, and 500 MPa for 5, 7.5, and 10 min) on anthocyanins content and antioxidant activity (AA) by FRAP and TEAC assays, and the most effective HHP condition on overall sensory acceptance and stability of jussara juice, were investigated. While mild pressurization (200 MPa for 5 min) retained anthocyanins and AA, 82% of anthocyanins content and 46% of TEAC values were lost at the most extreme pressurization condition (500 MPa for 10 min). The addition of 12.5% sucrose was the ideal for jussara juice consumer acceptance. No significant difference was observed for overall sensory acceptance scores of unprocessed (6.7) and HHP-processed juices (6.8), both juices being well-accepted. However, pressurization was ineffective in promoting the retention of anthocyanins and AA in jussara juice stored at refrigeration temperature for 60 days, probably due to enzymatic browning.


2019 ◽  
Vol 33 (04) ◽  
pp. 1950039
Author(s):  
G. Ya. Khadzhai ◽  
N. R. Vovk ◽  
R. V. Vovk ◽  
I. L. Goulatis ◽  
O. V. Dobrovolskiy

The effect of high hydrostatic pressure on the relaxation of the electrical resistivity at room temperature of oxygen-nonstoichiometric [Formula: see text] (Re = Y, Ho) single crystals is investigated. The application of hydrostatic pressure has been revealed to significantly intensify the process of diffusion coalescence in the oxygen subsystem. At the same time, the intensity of the redistribution of labile oxygen is significantly changed when yttrium is replaced by holmium.


2020 ◽  
Vol 22 (28) ◽  
pp. 16325-16333
Author(s):  
Lena Ostermeier ◽  
Rosario Oliva ◽  
Roland Winter

The cosolvent DMSO and high pressure have antagonistic effects on the kinetic constants of α-chymotrypsin-catalyzed hydrolysis reactions.


2018 ◽  
Vol 24 (6) ◽  
pp. 507-518 ◽  
Author(s):  
Paz Spira ◽  
Antonio Bisconsin-Junior ◽  
Amauri Rosenthal ◽  
Magali Monteiro

The effect of high hydrostatic pressure on antioxidant activity, total phenolic compounds, physicochemical characteristics, color, pectin methylesterase activity, and microbiological count were evaluated during the shelf life of Pêra-Rio orange juice. Pressurized (520 MPa, 60 ℃, for 360 s), non-processed and pasteurized (95 ℃/30 s) orange juice were compared at zero time of storage. Pressurized and pasteurized juices were studied during a refrigerated 90-day shelf life. Pressurization did not cause expressive change in physicochemical characteristics of Pêra-Rio orange juice along shelf life, but significantly reduced pectin methylesterase residual activity to 13% and microbiological counts below detection levels up to 68 days of storage, with small counts (30.0 × 10 CFU/mL mesophilic aerobic bacteria and 20.7 × 10 CFU/mL yeast and mold) at 90 days, capable of ensuring the juice’s stability along shelf life. Lightness ( L*) and b* values were significantly reduced by high hydrostatic pressure during shelf life, while a* values were significantly higher. Ascorbic acid decreased around 80% during shelf life. Antioxidant activity remained stable after processing and during storage.


Sign in / Sign up

Export Citation Format

Share Document