scholarly journals Yield performance and stability of modern breeding stock of spring durum wheat (Triticum durum Desf.) from Russia and Kazakhstan

2019 ◽  
Vol 22 (8) ◽  
pp. 939-950 ◽  
Author(s):  
P. N. Mal’chikov ◽  
M. A. Rozova ◽  
A. I. Morgunov ◽  
M. G. Myasnikova ◽  
Yu. I. Zelensky

Identifcation of adaptive responses of breeding material, developed in different breeding centers, helps to purposefully correct these traits where it is necessary. Thus, 42 modern breeding lines from eight institutions of Russia and Kazakhstan were studied in comparison with the historical standard Bezenchukskaya 139 in trails of 16-17 and 18 KASIB-SDW (Kazakhstan-Siberian net for wheat improvement, spring durum wheat) in 2015–2017. Field experiments and yield measurements in each ecological cite were similar. To solve these tasks of the experiment, two-factor ANOVA, methods for adaptability assessment cluster analysis and principle component method were applied. As a result, it was established that 1) genotype and genotype – environment interaction (overall 15.8–23.5 % of total dispersion) had signifcant effect on yield variability; 2) genotype – environment interactions were of linear nature and had no destabilizing effect; 3) all the genotypes tested can be distributed in three clusters, the frst one for locally adapted varieties, the third for varieties of a wide areal, the second included genotypes with intermediate characteristics; 4) breeding centers of the Federal Altai Scientifc Centre of Agro-Biotechnologies and of the Research Institute of Agriculture of South-East produced predominantly varieties of local importance, the Samara Research Institute of Agriculture – varieties of wide area; 5) a stable trend of increased mean yield compared to historical standard Bezenchukskaya 139 over ecological sites was observed only for Samara varieties; 6) varieties of all the breeding centers had no stable difference from Bezenchukskaya 139 concerning stability and responsiveness, which can be explained by an incomplete breeding process for these parameters and confrms the importance of the KASIB program; 7) a trend of yield increase compared to Bezenchukskaya 139 under testing in defnite local environments had more stable parameters with the largest progress observed in the Altai Research Institute of Agriculture (135.4 and 163.2 % to Bezenchukskaya 139), which can be explained by a high efciency of breeding of locally adapted varieties in the breeding center.

2017 ◽  
Vol 54 (5) ◽  
pp. 670-683 ◽  
Author(s):  
REZA MOHAMMADI ◽  
MOHAMMAD ARMION ◽  
ESMAEIL ZADHASAN ◽  
MALEK MASOUD AHMADI ◽  
AHMED AMRI

SUMMARYDurum wheat (Triticum durum) is one of the most important cereal crops in the Mediterranean region; however, its cultivation suffers from low yield due to environmental constrains. The main objectives of this study were to (i) assess genotype × environment (GE) interaction for grain yield in rainfed durum wheat and to (ii) analyse the relationships of GE interaction with genotypic/meteorological variables by the additive main effects and multiplicative interaction (AMMI) model. Grain yield and some related traits were evaluated in 25 durum wheat genotypes (landrace, breeding line, old and new varieties) in 12 rainfed environments differing in winter air temperature. The AMMI analysis of variance indicated that the environment had highest contribution (84.3% of total variation) to the variation in grain yield. The first interaction principal component axis (IPCA1) explained 77.5% of GE interaction sum of squares (SS), and its effect was 5.5 times greater than the genotype effect, indicating that the IPCA1 contributed remarkably to the total GE interaction. Large GE interaction for grain yield was detected, indicating specific adaptation of genotypes. While the postdictive success method indicated AMMI-4 as the best model, the predictive success one suggested AMMI-1. The AMMI biplot analysis confirmed a rank change interaction among the locations, indicating the presence of strong and unpredictable rank-change location-by-year interactions for locations. In contrast to landraces and old varieties, the breeding lines with high yield performance had high phenotypic plasticity under varying environmental conditions. Results indicated that the GE interaction was associated with the interaction of heading date, plant height, rainfall, air temperature and freezing days.


Author(s):  
L. M. Shevchenko ◽  
A. O. Vasylenko ◽  
V. I. Sichkar ◽  
N. O. Vus ◽  
I. M. Bezuglyi ◽  
...  

The aim of the study was to determine the information content and adequacy of the ecological testing points of the pea breeding material and to identify the "ideal" genotype. Materials and methods. The breeding material in the experiments was represented by cultivars bred at the PPI nd.a. V.Ya. Yuriev (Tsarevych, Oplot, Otaman, Metsenat, Korvet, Haiduk, and Malakhit) and ten breeding lines (SL 11-129, SL 11-213, SL 11-55, SL 11-58, SL 10-37, SL 11-32, SL 10-132, SL 09-118, SL 11-166, and SL 11-176). In addition there was one cultivar (Svit) bred at the Plant Breeding and Genetics Institute. All the cultivars are leafless, semi-dwarf, mid-ripening, except for Tsarevych (mid-early). The field experiments were carried out in accordance with the methods of field experimentation, using the conventional pea growing technology. The seeding rate was 1.2 million germinable seeds/ha; the plot area was 10 m2. To evaluate the accessions for the variability in different environments, we used a regression model developed by S.A. Eberhart and W.A. Russel, where the regression coefficient is an indicator of the genotype-environment interaction. This model is included in "Guidelines for Environmental Trials of Corn". Results and discussion. Thus, comparing the regression coefficient in pea cultivars Oplot, Tsarevych, Haiduk, Korvet, and Metsenat, we could conclude that these accessions were highly intensive in the OSES conditions and extensive in the PPI NAAS conditions (except for Metsenat). Regarding the regression coefficient in the breeding lines, none of them had a regression coefficient of 1.0. Over the study period, the regression coefficient was 1.4 only in line SL 11-58 (PPI NAAS) and 1.2 (OSES), characterizing this line as intensive regardless of the place of cultivation. Taking into account that the regression coefficient values of <1 are intrinsic to extensive accessions, lines SL 10-132 (RC = 0.4) and SL 11-176 (RC = 0.8) are preferred. Because these accessions also have a high genotypic effect. In addition, the regression coefficient in breeding line SL 09-118 was 0.9, with a genotypic effect of 0.07. Such combination of the indicators characterizes the line as relatively stable, with sufficient potential performance, and this breeding line will not be demanding to growing conditions similar to the OSES ones. Conclusions. Thus, the evaluation of both cultivars and breeding lines in the environmental trial showed that the pea breeding at the Plant Production Institute named after VYa Yuryev had a significant potential to create cultivars that would be well-adapted to both eastern and southern conditions, and that environmental trials remained an effective tool for assessing breeding material and selecting accessions with the maximum fulfillment of the genetic potential


2015 ◽  
Vol 66 (2) ◽  
pp. 122 ◽  
Author(s):  
G. D. Schwenke ◽  
S. R. Simpfendorfer ◽  
B. C. Y. Collard

During the 2007 winter cropping season in Australia, severe leaf-spotting (necrosis) symptoms resembling chloride (Cl–) deficiency found in North America were reported in the newly released durum wheat variety Jandaroi. Testing for bacterial, fungal and viral pathogens all proved negative. Four Australian durum and four Australian bread wheat varieties were grown, along with a North American variety of each, in a glasshouse experiment using a sterile sand–vermiculite mix and nutrient solutions containing 0 (nil), 0.5, 1.0 or 2.0 mm Cl–. When grown in the nil Cl– solution, all durum and some bread wheat varieties produced leaf-spotting symptoms the same as observed in the field. Nil Cl– also delayed flowering, reduced biomass, decreased grain size, and depressed grain yield in most durum and bread wheat varieties. In field experiments, additions of Cl– fertiliser as KCl at sowing provided no biomass or yield response from a range of wheat varieties, probably because the plants accessed sufficient Cl– from below 0.9 m depth in the soil. Chloride concentrations in whole-plant tissue sampled at head emergence suggested that unfertilised plants were borderline deficient in Cl– according to critical values established in North America. An in-crop foliar Cl– application experiment showed linear uptake of applied Cl–, as MgCl2, until the end of tillering. However, because leaf-spotting symptoms typically appear only after tillering, it is not possible to correct Cl– deficiency by adding Cl– fertiliser to the affected crop after symptoms appear. Managing Cl– in susceptible crops therefore needs to be preventative rather than curative. Among commercial varieties, Jandaroi was highly sensitive to low Cl–, Caparoi was moderately sensitive, and EGA Bellaroi was tolerant. Several elite durum breeding lines grown in 2010 showed considerably reduced leaf spotting compared with Jandaroi under low Cl– conditions, indicating potential for conventional breeding to reduce the potential impact of low Cl– soils on durum production in northern Australia.


2009 ◽  
Vol 147 (5) ◽  
pp. 537-545 ◽  
Author(s):  
R. MOHAMMADI ◽  
A. AMRI ◽  
R. HAGHPARAST ◽  
D. SADEGHZADEH ◽  
M. ARMION ◽  
...  

SUMMARYPattern analysis, cluster and ordination techniques, was applied to grain yield data of 20 durum wheat genotypes grown in 19 diversified environments during 2005–07 to identify patterns of genotype (G), environment (E) and genotype-by-environment (G×E) interaction in durum multi-environment trials (METs). Main effects due to E, G and G×E interaction were highly significant, and 0·85 of the total sum of squares (SS) was accounted for by E. Of the remaining SS, the G×E interaction was almost 12 times the contribution of G alone. The knowledge of environmental and genotype classification helped to reveal several patterns of G×E interaction. This was verified by ordination analysis of the G×E interaction matrix. Grouping of environments, based on genotype performance, resulted in the separation of different types of environments. Pattern analysis confirmed the cold and warm mega-environments, and allowed the discrimination and characterization of adaptation of genotypes. However, several patterns of G×E interaction in Iran's regional durum yield trials were further discerned within these mega-environments. The warm environments tended to be closer to one another, suggesting that they discriminate among durum genotypes similarly, whereas cold environments tended to diverge more. The dwarf and early maturing breeding lines from ICARDA with low to medium yields and high contribution to G×E interaction were highly adapted to warm environments, whereas the tall and later maturing genotypes with low to high yields were highly adapted to the cold environments of Iran.


2006 ◽  
Vol 54 (4) ◽  
pp. 459-467 ◽  
Author(s):  
E. Farshadfar ◽  
J. Sutka

The genotype by environment (GE) interaction is a major problem in the study of quantitative traits because it complicates the interpretation of genetic experiments and makes predictions difficult. In order to quantify GE interaction effects on the grain yield of durum wheat and to determine stable genotypes, field experiments were conducted with ten genotypes for four consecutive years in two different conditions (irrigated and rainfed) in a completely randomized block design with three replications in each environment. Combined analysis of variance exhibited significant differences for the GE interaction, indicating the possibility of stable entries. The results of additive main effect and multiplicative interaction (AMMI) analysis revealed that 12% of total variability was justified by the GE interaction, which was six times more than that of genotype. Ordination techniques displayed high differences for the interaction principal components (IPC1, IPC2 and IPC3), indicating that 92.5% of the GE sum of squares was justified by AMMI1, AMMI2 and AMMI3, i.e. 4.5 times more than that explained by the linear regression model. The results of the AMMI model and biplot analysis showed two stable genotypes with high grain yield, due to general adaptability to both rainfed and irrigated conditions, and one with specific adaptation.


Author(s):  
А.В. Казарина ◽  
Л.К. Марунова

Исследования проводились в Поволжском НИИСС – филиале СамНЦ РАН в 2018–2019 годах. В статье представлены результаты лабораторных и полевых опытов по изучению влияния предпосевной обработки семян и листовой подкормки вегетирующих растений физиологически активными препаратами на особенности продукционного процесса донника белого однолетнего. Под влиянием обработки семян изучаемыми препаратами увеличивалась энергия прорастания семян на 2–10% и всхожесть — на 1–3%. Морфометрическая оценка проростков донника показала, что обработка препаратами «Витанолл-N» и «Гумостим» способствовала увеличению длины проростков на 7,9–14,0%. Наибольшее влияние на рост и развитие корневой системы оказывали регулятор роста «Мивал-Агро» (превышение над контрольным вариантом составило 24,8–29,3%), комплексное микроудобрение «Витанолл-N» (обеспечило увеличение массы корешков на 25,6–41,5%), вариант с применением гуминового удобрения «Гумостим» превышал контроль по данному показателю на 27,0–27,2%. Максимальное влияние на продуктивность среднеспелого сорта Поволжский оказывали регулятор роста «Мивал-Агро» (превышение относительно контроля составило 20,9%) и гуминовое удобрение «Гумостим» (превышение 27,4%). У скороспелого сорта Средневолжский наиболее эффективными были варианты с внесением комплексного удобрения «Витанолл-N» и гуминового удобрения «Гумостим»: прибавка относительно контроля составила 17,6–25,1%. Анализ результатов лабораторных и полевых опытов показал достаточно высокую корреляционную зависимость между морфометрическими показателями проростков и урожайностью зелёной массы сортов донника однолетнего. У изучаемых сортов наибольшая связь урожайности установлена с длиной корешка (r = 0,71–0,72) и массой корешков (r = 0,66–0,84). В меньшей степени продуктивность сопряжена с параметрами надземной части проростков. У обоих сортов отмечена средняя положительная связь с массой ростков (r = 0,35–0,50). The investigation took place in the Volga Research Institute of Plant Breeding and Seed Science in 2018–2019. This paper reports on lab and field experiments studying the influence of seed and foliar treatment by physiologically active preparations on productivity of annual white melilot. Seed treatment improved seed vigor by 2–10% and germination ability — by 1–3%. “Vitanoll-N” and “Gumostim” preparations increased germ length by 7.9–14.0%. The following preparations had the highest effect on root growth and development: “Mival-Agro” growth regulator — by 24.8–29.3%, “Vitanoll-N” complex microfertilizer — by 25.6–41.5%, “Gumostim” humic fertilizer — by 27.0–27.2%. Mid-season “Povolzhskiy” variety yielded the best after “Mival-Agro” and “Gumostim” applications. The yield increase amounted to 20.9 and 27.4%, respectively. Short-season “Srednevolzhskiy” variety performed the best after “Vitanoll-N” and “Gumostim” treatment: yield increased by 17.6–25.1%. Analyses showed high correlation between germ morphology and green mass productivity. The highest correlation was determined between productivity and root length (r = 0.71–0.72) or weight (r = 0.66–0.84). Germ top characteristics had weaker correlation with crop yield. Both varieties showed moderate correlation between their yield and root weight (r = 0,35–0,50).


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 483a-483
Author(s):  
Roy N. Keys ◽  
Dennis T. Ray ◽  
David A. Dierig

Guayule (Parthenium argentatum Gray, Asteraceae) is a latex-producing perennial desert shrub that is potentially of economic importance as an industrial crop for the desert Southwest. It is known to possess complex reproductive modes. Diploids are predominantly sexual and self-incompatible, while polyploids show a range of apomictic potential and self-compatibility. This paper describes the development of a relatively rapid and simple technique for characterizing reproductive modes of breeding lines of P. argentatum. Initial field experiments were based on an auxin test used successfully to characterize reproductive mode in the Poaceae. The application of 2,4-dichlorophenoxyacetic acid inhibited embryo formation in P. argentatum, but this was not the case with other auxins tested. Results of field experiments were ambiguous because: 1) the floral structure of P. argentatum is such that auxins might not have penetrated to the ovules, and 2) there was potential self-fertilization by pollen released within isolation bags. Therefore, in vitro culture of flower heads was tested because it provided much better control of environmental conditions, growth regulator application, and pollen release. Auxin alone, or in combination with gibberellic acid or kinetin, inhibited parthenogenesis in vitro. Embryo production did not vary using two substantially different nutrient media. In vitro flower head culture using a (Nitsch and Nitsch) liquid nutrient medium without growth regulators, enabled characterization of the reproductive mode of seven breeding lines, ranging from predominantly sexual to predominantly apomictic. The results of this technique were substantiated using RAPD analyzes of progeny arrays from controlled crosses.


Plant Disease ◽  
2011 ◽  
Vol 95 (3) ◽  
pp. 263-268 ◽  
Author(s):  
S. K. Gremillion ◽  
A. K. Culbreath ◽  
D. W. Gorbet ◽  
B. G. Mullinix ◽  
R. N. Pittman ◽  
...  

Field experiments were conducted in 2002 to 2006 to characterize yield potential and disease resistance in the Bolivian landrace peanut (Arachis hypogaea) cv. Bayo Grande, and breeding lines developed from crosses of Bayo Grande and U.S. cv. Florida MDR-98. Diseases of interest included early leaf spot, caused by the fungus Cercospora arachidicola, and late leaf spot, caused by the fungus Cercosporidium personatum. Bayo Grande, MDR-98, and three breeding lines, along with U.S. cvs. C-99R and Georgia Green, were included in split-plot field experiments in six locations across the United States and Bolivia. Whole-plot treatments consisted of two tebuconazole applications and a nontreated control. Genotypes were the subplot treatments. Area under the disease progress curve (AUDPC) for percent defoliation due to leaf spot was lower for Bayo Grande and all breeding lines than for Georgia Green at all U.S. locations across years. AUDPC for disease incidence from one U.S. location indicated similar results. Severity of leaf spot epidemics and relative effects of the genotypes were less consistent in the Bolivian experiments. In Bolivia, there were no indications of greater levels of disease resistance in any of the breeding lines than in Bayo Grande. In the United States, yields of Bayo Grande and the breeding lines were greater than those of the other genotypes in 1 of 2 years. In Bolivia, low disease intensity resulted in the highest yields in Georgia Green, while high disease intensity resulted in comparable yields among the breeding lines, MDR-98, and C-99R. Leaf spot suppression by tebuconazole was greater in Bolivia than in the United States. This result indicates a possible higher level of fungicide resistance in the U.S. population of leaf spot pathogens. Overall, data from this study suggest that Bayo Grande and the breeding lines may be desirable germplasm for U.S. and Bolivian breeding programs or production.


Plant Disease ◽  
2017 ◽  
Vol 101 (11) ◽  
pp. 1843-1850 ◽  
Author(s):  
Brian S. Jordan ◽  
Albert K. Culbreath ◽  
Timothy B. Brenneman ◽  
Robert C. Kemerait ◽  
William D. Branch

Peanut (Arachis hypogaea) cultivars with resistance or tolerance to Cercospora arachidicola and/or Cercosporidium personatum, the causes of early and late leaf spot, respectively, are needed for organic production in the southeastern U.S. To determine the potential of new breeding lines for use in such production systems, field experiments were conducted in Tifton, GA, in 2014 and 2015 in which nine breeding lines and two cultivars, Georgia-06G and Georgia-12Y, were grown without foliar fungicide applications. In one set of trials, cultivar Georgia-12Y and most of the breeding lines evaluated had early season vigor ratings, early-season canopy width measurements, final plant populations, and pod yield that were greater than those of standard cultivar Georgia-06G. In those trials, final late leaf spot Florida scale ratings were lower and canopy reflectance measured as the normalized difference vegetation index (NDVI), was higher all the breeding lines than those of Georgia-06G. In another set of trials, two of those same breeding lines had final late leaf spot ratings similar to those of Georgia-12Y in 2014, whereas in 2015, six of those breeding lines had final leaf spot ratings that were lower than those of Georgia-12Y. Yields were similar for Georgia-12Y and all the breeding lines in the Gibbs Farm trials. Across years and breeding lines at the Lang Farm, the relationship between visual estimates of defoliation and NDVI was described by a two sector piecewise regression with NDVI decreasing more rapidly with increasing defoliation above approximately 89%. The utility of NDVI for spot comparisons among breeding lines appears to be limited to situations where there are differences in defoliation. Georgia-12Y and multiple breeding lines evaluated show potential for use in situations such as organic production where acceptable fungicides available for seed treatment and leaf spot control are limited.


2018 ◽  
Vol 69 (12) ◽  
pp. 1237 ◽  
Author(s):  
G. C. Wright ◽  
M. G. Borgognone ◽  
D. J. O Connor ◽  
R. C. N. Rachaputi ◽  
R. J. Henry ◽  
...  

Breeding for improved blanchability—the propensity of the testa (skin) to be removed from the kernel following rapid heat treatment—is a priority for improvement in the Australian Peanut Breeding Program (APBP). Easy removal of the testa by blanching is required for processing of peanuts into peanut butter and various other confectionary products. Thus, blanchability is an economically important trait in any newly released cultivar in Australia. A better understanding of the range of genetic variation, nature of inheritance and genotype×environment (G×E) interactions, and the development of a low-cost method to phenotype in early generations, could speed up breeding for this trait. Studies were conducted to develop a low-cost, rapid method utilising minimal amounts of seed to phenotype in early generations, along with an assessment of G×E interactions over a range of years and environments to derive optimal selection protocols. Use of a smaller kernel sample size than standard (50 vs 200g) was effective for accurately assessing blanchability in breeding lines and could allow selection in early generations (e.g. in seed produced from a single F2 plant where seed supply is adequate). G×E interaction for blanchability was shown to be very low. Genotypic variance explained 62–100% of the total variance for blanchability, assessed in two diverse germplasm pools including 107 accessions in the USA mini-core over three environments and multiple APBP breeding lines grown over nine different years–environments. Genotypic correlations between all environments were very high (~0.60–0.96), with heritability for the blanchability trait estimated to be very high (0.74–0.97) across the 13 trials. The results clearly demonstrate that effective selection for improved blanchability can be conducted in early generations and in a limited number of contrasting environments to ensure consistency of results.


Sign in / Sign up

Export Citation Format

Share Document