scholarly journals Fungicides and Bacillus subtilis against fungi isolated from commercial seed of Side oats grama (Bouteloua curtipendula)

Author(s):  
Alicia Zárate-Ramos ◽  
Adrián Raymundo Quero-Carrillo ◽  
Leonor Miranda-Jiménez ◽  
Cristian Nava-Díaz ◽  
Leticia Robles-Yerena

Banderita (<em>Bouteloua curtipendula</em>), produces abundant and appetizing forage for cattle under extreme arid conditions. The demand for its seed in Mexico is a direct function of the potential for the establishment of pastures and therefore, the sanitary quality of this is fundamental. Phytopathogenic fungi affect the seed and establishment of prairies. The objective was to evaluate<em> in vitro</em> the effect of six agrochemicals and one biological against fungi associated with Banderita seed, to reduce losses caused by these. Treatments were carried out in PDA culture medium combined with Captan, Thiophanate-methyl, Mancozeb, Benomil, Prochloraz, Thiabendazole and <em>Bacillus subtilis</em> at concentrations according to the case of 0 (control), 0.005, 0.001, 0.05, 0.01, 0.5, 0.1, 1.5, 10, 100, 150, 200, 250 and 300 mg L-1, against <em>Alternaria alternata</em>, <em>Bipolaris cynodontis</em> and <em>Fusarium incarnatum</em>. The bi-directional colony diameter was measured every 48 h. The effective concentration of 50% was estimated by a non-linear regression model; in relation to the percentage of inhibition of mycelial growth. <em>Bacillus subtilis</em> presented higher mycelial inhibition 97% (P &lt;0.05), followed by Thiophanate-methyl (96%), Prochloraz (94%), Captan (93%) and Mancozeb (92%). Benomyl and Thiabendazole showed low inhibition of fungi with 46 and 37%.<em> B. subtilis</em> and Thiophanate-methyl are the products with the greatest possibility of controlling pathogens associated with Banderita grass seeds.

Author(s):  
Gabriela de Oliveira Fernandes ◽  
Marcella Pecora Milazzotto ◽  
Andrei Antonioni Guedes Fidelis ◽  
Taynan Stonoga Kawamoto ◽  
Ligiane de Oliveira Leme ◽  
...  

Abstract The present study aimed to identify biomarkers to assess the quality of in vitro produced (IVP) bovine embryos in the culture media. IVP embryos on Day (D) 5 of development were transferred to individual drops, where they were maintained for the last 48 h of culture. Thereafter, the medium was collected and the embryos were transferred to the recipients. After pregnancy diagnosis, the media were grouped into the pregnant and nonpregnant groups. The metabolic profiles of the media were analyzed via electrospray ionization mass spectrometry, and the concentrations of pyruvate, lactate, and glutamate were assessed using fluorimetry. The spectrometric profile revealed that the media from embryos from the pregnant group presented a higher signal intensity compared to that of the nonpregnant group; the ions 156.13 Da [M + H]+, 444.33 Da [M + H]+, and 305.97 Da [M + H]+ were identified as biomarkers. Spent culture medium from expanded blastocysts (Bx) that established pregnancy had a greater concentration of pyruvate (p = 0.0174) and lesser concentration of lactate (p = 0.042) than spent culture medium from Bx that did not establish pregnancy. Moreover, pyruvate in the culture media of Bx can predict pregnancy with 90.9% sensitivity and 75% specificity. In conclusion, we identified markers in the culture media that helped in assessing the most viable IVP embryos with a greater potential to establish pregnancy.


2013 ◽  
Vol 25 (1) ◽  
pp. 217
Author(s):  
R. F. Gonçalves ◽  
C. Figueiredo ◽  
M. A. Achilles

There are still immense differences in the quality of in vitro-produced embryos compared to their in vivo-generated counterparts. These differences include a higher sensitivity of in vitro-produced embryos towards cryopreservation. The quality of such embryos has been evaluated using various parameters like morphological examination, assessment of total cell numbers, or pregnancy rates after transfer. In the present study, the effects of glycine, alanine, taurine, and glutamine addition to SOF (Achilles Genetics culture medium, Achilles Genetics®, Garça, SP, Brazil) on the in vitro development (cleavage and blastocyst rates) and quality (total cell and apoptotic cell numbers) of bovine embryos were determined. Ovaries of Nelore cows were obtained from a slaughterhouse. Cumulus–oocyte complexes (COC) were collected from follicles ≥4 mm in diameter, matured in TCM-199, and fertilized with frozen–thawed Nelore bull semen (IVF = Day 0). On Day 1, presumptive zygotes were cultured in SOF supplemented with fetal bovine serum (FBS, group 1, n = 550) or in Achilles Genetics culture medium (SOF supplemented with Achilles Mixture and FBS, group 2, n = 557) at 38.5°C and 5% CO2 in air until Day 9. Embryos were evaluated during culture: at Day 3 cleavage rates, at Day 7 blastocyst rates, and on Day 9 hatching rates. Experiments were replicated 5 times, analysed using ANOVA, followed by a comparison of means by Tukey test (P ≤ 0.05). Blastocysts at Day 8 from Group 1 (n = 75) and Group 2 (n = 75) were fixed and permeabilized for TUNEL assay (DeadEndTM Florimetric TUNEL System, Promega, Madison, WI, USA), according to the manufacturer instructions. Total cell number, apoptotic cell number, and apoptotic cell index (calculated by dividing the apoptotic cell number by total cell number) were analyzed by analysis of variance and means were compared by Student Newman Keuls test. The threshold of significance was set at P ≤ 0.05. Cleavage rates were 79.2 ± 2.5 for group 1 and 91.0 ± 2.5 for group 2. Blastocyst and hatching rates (calculated on the total of zygotes) for group 2 (47.4 ± 2.8; 82.1 ± 1.5) were significantly greater than for group 1 (39.8 ± 2.8; 74.3 ± 1.5). The total cell numbers were not different (P > 0.05) between group 1 (112.7 ± 2.9) and group 2 (111.1 ± 2.7). Blastocysts from group 2 showed lower (P < 0.05) number of apoptotic cells (10.7 ± 1.2) than those from group 1 (20.9 ± 1.2). These results indicate that the addition of glycine, alanine, taurine, and glutamine to SOF (Achilles Mixture) may be an important energy source for the bovine blastocyst and could act synergistically to enhance embryo development to the hatching stage and embryo quality. Financial support from CNPq and FAPESP.


2002 ◽  
Vol 68 (3) ◽  
pp. 1102-1108 ◽  
Author(s):  
Sau-Ching Wu ◽  
Sui-Lam Wong

ABSTRACT Streptavidin is a biotin-binding protein which has been widely used in many in vitro and in vivo applications. Because of the ease of protein recovery and availability of protease-deficient strains, the Bacillus subtilis expression-secretion system is an attractive system for streptavidin production. However, attempts to produce streptavidin using B. subtilis face the problem that cells overproducing large amounts of streptavidin suffer poor growth, presumably because of biotin deficiency. This problem cannot be solved by supplementing biotin to the culture medium, as this will saturate the biotin binding sites in streptavidin. We addressed this dilemma by engineering a B. subtilis strain (WB800BIO) which overproduces intracellular biotin. The strategy involves replacing the natural regulatory region of the B. subtilis chromosomal biotin biosynthetic operon (bioWAFDBIorf2) with an engineered one consisting of the B. subtilis groE promoter and gluconate operator. Biotin production in WB800BIO is induced by gluconate, and the level of biotin produced can be adjusted by varying the gluconate dosage. A level of gluconate was selected to allow enhanced intracellular production of biotin without getting it released into the culture medium. WB800BIO, when used as a host for streptavidin production, grows healthily in a biotin-limited medium and produces large amounts (35 to 50 mg/liter) of streptavidin, with over 80% of its biotin binding sites available for future applications.


2008 ◽  
Vol 48 (2) ◽  
pp. 201-212
Author(s):  
Juliana Sartori ◽  
Antonio Maringoni

Effect of Fungicides on Colony Growth ofColletotrichum Lindemuthianum(Sacc. & Magn.) Scrib.Colletotrichum lindemuthianum(Sacc. & Magn.) Scrib. is the causal agent of the anthracnose of common bean (Phaseolus vulgarisL.), a fungal disease of a great significance in brazilian bean cultures. The goals of this work were to evaluate thein vitrocolony growth and to determine the ED50interval of twentyC. lindemuthianumisolates from different regions of Brazil to five fungicides of different active ingredients and to some blendings (carbendazim, chlorothalonil, thiophanate-methyl, chlorothalonil + thiophanate-methyl, trifloxystrobin, propiconazole and trifloxystrobin + propiconazole), at concentrations of 0, 1, 10, 100 and 1000 μg/ml, in a potato-dextrose-agar culture medium. The results revealed seven isolates with low sensitivity to carbendazim and thiophanate-methyl (ED50interval greater than 1000 μg/ml) thus suggesting cross-resistance. Isolate sensitivity to chlorothalonil ranged from ED50interval less than 1 μg/ml to greater than 1000 μg/ml. Those isolates with high sensitivity to thiophanate-methyl, ED50interval less than 1 μg/ml, did also show it with respect to chlorothalonil + thiophanate-methyl. Sixteen isolates showed a high sensitivity to trifloxystrobin with a ED50interval less than 1 μg/ml. Nineteen isolates ofC. lindemuthianumshowed high sensitivity to propiconazole and to trifloxystrobin + propiconazole with ED50interval less than 1 μg/ml. Isolates with low sensitivity to carbendazim and thiophanate-methyl were sensitive to propiconazole and to trifloxystrobin + propiconazole. Variability was found in the sensitivity of the colony growth ofC. lindemuthianumisolates from different regions of Brazil to the fungicides evaluated.


Author(s):  
Daniel Alonso Pérez Corral ◽  
José de Jesús Ornelas Paz ◽  
Guadalupe Isela Olivas Orozco ◽  
Carlos Horacio Acosta Muñiz ◽  
Miguel Ángel Salas Marina ◽  
...  

Fungi and oomycetes are important plant pathogens that constantly attacked plants, thus compromising the production of foods worldwide. Streptomyces strains might be useful to control fungal pathogens by different mechanism. The in vitro antagonistic activity of non-volatile and volatile metabolites from four Streptomyces strains was evaluated over cultures of phytopathogenic fungi and oomycetes. The non-volatile compounds from Streptomyces strains significantly reduced (44.2 to 92.1%) the growth of aerial mycelium of pathogens. The volatile compounds (VOCs) from Streptomyces strains reduced both aerial mycelium (22.5 to 96.7%) and mycelium growing inside of culture medium (0.0 - 9.4%). The pathogens maintained their capacity to grow normally in fresh culture medium without antagonists after confrontations with antagonist VOCs. The analysis of VOCs by gas chromatography coupled to mass spectrometry revealed different kinds of VOCs included alcohols, aldehydes, ketones, esters, terpenes, terpenoids, thioethers, among others. The most abundant VOCs were trans-1,10-dimethyl-trans-9-decalol (geosmin), 2-methylisoborneol, 2-methyl-2-bornene, 1,4-dimethyladamantane, and 4-penten-1-ol, trifluoroacetate. The antipathogenic activity of nine pure VOCs that had been identified in cultures of the Streptomyces strains alone was evaluated in vitro against phytopathogenic fungi and oomycetes. Trans-2-hexenal was the most effective of these VOCs, inhibiting completely the growth of tested phytopathogens. The volatile and non-volatile compounds from Streptomyces strains effectively reduced the in vitro growth of phytopathogens and they might be used as biological control. Further studies are required to demonstrate this activity on open field conditions.


2020 ◽  
Vol 14 (4) ◽  
pp. 502-514
Author(s):  
O. S. Vachlova ◽  
T. A. Oboskalova

Here we review published data from experimental and clinical international studies examining pathogenetic effects of melatonin upon using programs of In Vitro Fertilization (IVF); highlighting various viewpoints on its biological action as a regulator of circadian rhythms: on the one hand, the inhibitory effect of melatonin on pulsating secretion of gonadotropin-releasing hormone was considered, thereby achieving a contraceptive effect; on the other hand, its ability to induce the secretion of human chorionic gonadotropin ensuring ovulation process, was discussed. We also review the data on melatonin acting as a highly active antioxidant. While using melatonin as a metabolic supplement in IVF programs, its positive effect on oocyte morphology and quality of fertilization, embryo division was observed. Moreover, we also highlight the results of studies examining melatonin-related effects on quality of fertilization and embryo division after adding it to culture medium. Such effects demonstrated dose-depended pattern. Taking into account the data of the analyzed publications, adding exogenous melatonin to culture medium may represent a new strategy for personalized approach to improve outcome of IVF programs. Its effectiveness should be further investigated and considered for introduction within the framework of pregravid preparation.


2018 ◽  
Vol 27 (3) ◽  
pp. 304-315 ◽  
Author(s):  
M.N. dos Santos ◽  
R. Ramachandran ◽  
A.S. Kiess ◽  
K.G.S. Wamsley ◽  
C.D. McDaniel

2000 ◽  
Vol 46 (10) ◽  
pp. 892-897 ◽  
Author(s):  
Tomohiro Hosoi ◽  
Akio Ametani ◽  
Kan Kiuchi ◽  
Shuichi Kaminogawa

In an effort to demonstrate the potential usefulness of Bacillus subtilis (natto) as a probiotic, we examined the effect of this organism on the growth of three strains of lactobacilli co-cultured aerobically in vitro. Addition of B. subtilis (natto) to the culture medium resulted in an increase in the number of viable cells of all lactobacilli tested. Since B. subtilis (natto) can produce catalase, which has been reported to exhibit a similar growth-promoting effect on lactobacilli, we also examined the effect of bovine catalase on the growth of Lactobacillus reuteri JCM 1112 and L. acidophilus JCM 1132. Both catalase and B. subtilis (natto) enhanced the growth of L. reuteri JCM 1112, whereas B. subtilis (natto) but not catalase enhanced the growth of L. acidophilus JCM 1132. In a medium containing 0.1 mM hydrogen peroxide, its toxic effect on L. reuteri JCM 1112 was abolished by catalase or B. subtilis (natto). In addition, a serine protease from B. licheniformis, subtilisin, improved the growth and viability of L. reuteri JCM 1112 and L. acidophilus JCM 1132 in the absence of hydrogen peroxide. These results indicate that B. subtilis (natto) enhances the growth and (or) viability of lactobacilli, possibly through production of catalase and subtilisin.Key words: Bacillus subtilis (natto), Lactobacillus, probiotic, catalase, subtilisin.


2015 ◽  
Vol 50 (5) ◽  
pp. 426-429 ◽  
Author(s):  
Julcéia Camillo ◽  
Jonny Everson Scherwinski-Pereira

The objective of this work was to evaluate the in vitro maintenance of oil palm (Elaeis guineensis and E. oleifera) accessions under slow-growth conditions. Plants produced by embryo rescue were subject to 1/2MS culture medium supplemented with the carbohydrates sucrose, mannitol, and sorbitol at 1, 2, and 3% under 20 and 25±2ºC. After 12 months, the temperature of 20°C reduced plant growth. Sucrose is the most appropriate carbohydrate for maintaining the quality of the plants, whereas mannitol and sorbitol result in a reduced plant survival.


Zygote ◽  
2013 ◽  
Vol 22 (3) ◽  
pp. 411-418 ◽  
Author(s):  
Ziban Chandra Das ◽  
Mukesh Kumar Gupta ◽  
Sang Jun Uhm ◽  
Hoon Taek Lee

SummaryInsulin, transferrin and selenium (ITS) supplementation to oocyte maturation medium improves the post-fertilization embryonic development in pigs. ITS is also commonly used as a supplement for the in vitro culture (IVC) of embryos and stem cells in several mammalian species. However, its use during IVC of pig embryos has not been explored. This study investigated the effect of ITS supplementation to IVC medium on the in vitro development ability of pig embryos produced by parthenogenetic activation (PA), in vitro fertilization (IVF) or somatic cell nuclear transfer (SCNT). We observed that ITS had no significant effect on the rate of first cleavage (P > 0.05). However, the rate of blastocyst formation in ITS-treated PA (45.3 ± 1.9 versus 27.1 ± 2.3%), IVF (31.6 ± 0.6 versus 23.5 ± 0.6%) and SCNT (17.6 ± 2.3 versus 10.7 ± 1.4%) embryos was significantly higher (P < 0.05) than those of non-treated controls. Culture of PA embryos in the presence of ITS also enhanced the expansion and hatching ability (29.1 ± 3.0 versus 18.2 ± 3.8%; P < 0.05) of blastocysts and increased the total number of cells per blastocyst (53 ± 2.5 versus 40.9 ± 2.6; P < 0.05). Furthermore, the beneficial effect of ITS on PA embryos was associated with significantly reduced level of intracellular reactive oxygen species (ROS) (20.0 ± 2.6 versus 46.9 ± 3.0). However, in contrast to PA embryos, ITS had no significant effect on the blastocyst quality of IVF and SCNT embryos (P > 0.05). Taken together, these data suggest that supplementation of ITS to the IVC medium exerts a beneficial but differential effect on pig embryos that varies with the method of embryo production in vitro.


Sign in / Sign up

Export Citation Format

Share Document