scholarly journals Role of Molecular Markers in Crop Breeding: A Review

2021 ◽  
Author(s):  
Rajitha Jayakumar Nair ◽  
Manoj Kumar Pandey

Molecular markers are effective tools used to ‘flag’ the location of a specific gene or the inheritance of a definite trait. Markers are unique DNA fragments that can be identified inside the entire genome. The development of molecular markers combined with high throughput technologies have paved the way for achieving the desirable traits as well as induced biotic and abiotic stress tolerance in plant, which enhanced the crop breeding. Highly polymorphic molecular markers are developed for gene mapping, estimation of genetic diversity, finding out the evolution and phylogeny of crop, analysis of heterosis, assessment of diploid/haploid crops and genotyping of cultivars along with Marker Assisted Breeding (MAB)/Marker Assisted Selection (MAS). These are the most significant objectives for crop breeding. This review reveals about the role of various recently developed molecular markers in the improvement of crop. Molecular markers act as a “milestone” for the researchers who aim to enhance crop breeding.

2019 ◽  
Author(s):  
Gisele Kanzana ◽  
Yufei Zhang ◽  
Tiantian Ma ◽  
Wenxian Liu ◽  
Fan Wu ◽  
...  

AbstractSSR markers are commonly used for many genetic applications, such as map construction, fingerprinting and genetic diversity analysis due to their high reproducibility, levels of polymorphism and abundance. As endogenous, small RNAs, miRNAs have essential roles in plant development and gene expression under diverse stress conditions, including various biotic and abiotic stress conditions. In the present study, we predicted 110 pre-miRNAs sequences from 287 precursor miRNAs and used them as queries for SSR marker development. Among 110 primer pairs, 85 were successfully amplified and examined for transferability to other gramineae and non-gramineae species. The results showed that all 82 primer pairs yielded unambiguous and strong amplification, and across the 23 studied Cleistogenes accessions, a total of 385 alleles were polymorphic. The number of alleles produced per primer varied from 3 to 11, with an average of 4.69 per locus. The expected heterozygosity (He) ranged from 0.44 to 0.88, with an average of 0.74 per locus, and the PIC (Polymorphism Information Content) values ranged from 0.34 to 0.87, with an average of 0.69 per locus. In this study, 1422 miRNA target genes were predicted and analyzed using the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases. The results showed that this miRNA-based microsatellite marker system can be very useful for genetic diversity and marker-assisted breeding studies.


Author(s):  
V. Swarnalatha ◽  
Bidush Ranjan Swar ◽  
M. Rajendar Reddy ◽  
S. Vanisree

Soybean MAGIC lines are recently developed by tailor made source of germplasm that have undergone heavy genetic recombination. The present study was carried out in Kharif 2018 to Rabi 2019 - 20 to assess its extent of genetic diversity at molecular level in 95 soybean MAGIC lines along with six checks by using 30 SSR markers from which 27 were found polymorphic. A total of 106 alleles were generated with an average of 3.53 and a range of two to six alleles per loci. The value of observed heterozygosity was varying from 0.00 to 0.099 indicating a higher frequency of homozygotes among the accessions. Maximum PIC was 0.955 for Staga001 followed by 0.948 (Satt168, Satt453, Satt534), 0.947(Satt565) and 0.945(Satt371). The range of Jaccard’s similarity coefficient was varying from 0.089 to 1, most of the values were between 0.2 to 0.3 with an average of 0.3 indicating considerable diversity exists among the genotypes. A total of six main clusters were formed by UPGMA clustering method. Cluster II was the largest comprising 48 genotypes which were grouped into four sub-clusters. Clustering based on SSR markers revealed a very precise grouping of the genotypes based on their relatedness than their phenotypic data alone. Hence it can be successfully deployed for selecting desirable genotypes which can be utilized in future breeding programs for exploiting heterosis or in the introgression of genes for biotic and abiotic stress tolerance in soybean crop.


Author(s):  
Vijayata Singh ◽  
N. R. Yadav ◽  
Jogendra Singh

Molecular markers are routinely utilized worldwide in all major crops as a component of breeding. The pace of development of molecular markers, establishment of marker–trait associations for important agronomic traits and other genomic sources has been accelerated in other pulses than the mungbean. The efforts are underway to use high-throughput genotyping platforms besides developing more genomic resources. So far, progress in the use of marker-assisted selection as a part of mungbean breeding programmes has been very limited. In this article, we have reviewed the progress made, limitations encountered and future possibilities for the application of marker-assisted selection in the genetic improvement of mungbean crops.


2017 ◽  
Vol 53 (No. 2) ◽  
pp. 47-54 ◽  
Author(s):  
L. Shah ◽  
A. Ali ◽  
Y. Zhu ◽  
S. Wang ◽  
H. Si ◽  
...  

Wheat, one of the world’s major crops, is seriously affected by fungal diseases, especially in regions with high moisture and moderately warm temperatures. This paper reviews various molecular and conventional techniques that are used to identify genotypes with resistance alleles associated with Fusarium head blight (FHB) diseases. Quantitative trait loci (QTL) type II, designated as Fhb1, are frequently applied in plant breeding, and the newly recognized genes related to resistance to this fungal disease give extra insights into marker-assisted selection (MAS). Molecular markers are robust tools that may be routinely used in MAS for the mapping of resistance genes in crop breeding. FHB resistance is polygenic, and different resistance genes could be conveyed into a single genotype by MAS, which might ensure greater resistance to FHB disease. In conclusion, different researchers have used various techniques to control FHB resistance, such as MAS, gene pyramiding (through backcross), and molecular markers (association with resistance QTLs or genes).  


Advancement in sequencing technologies has contributed towards identification and development of different types of molecular markers. Molecular plant breeding has contributed to a more comprehensive understanding of molecular markers and their role in identifying the genetic diversity within the crop plants. Marker-assisted breeding is basically the application of molecular markers, in combination with linkage maps and genomics, to alter and improve plant traits on the basis of genotypic assay. Several modern plant breeding strategies were developed which include marker-assisted selection (MAS), marker-assisted backcrossing (MABC), marker-assisted recurrent selection (MARS), and genome-wide selection (GWS) or genome selection (GS). The selection of right type of molecular markers is usually dependent on the breeding objectives. Similarly, selection strategies of molecular markers for qualitative and quantitative characters may differ. The procedure followed for marker assisted selection under various breeding objectives and conditions, for qualitative and quantitative traits are discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document